DOI QR코드

DOI QR Code

STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation

  • Purna Krishnamurthy (Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine) ;
  • Mark H. Kaplan (Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine)
  • Received : 2016.05.04
  • Accepted : 2016.07.20
  • Published : 2016.08.31

Abstract

Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE). In this review, we summarize the role of STAT6 in allergic diseases, its interaction with the co-factor PARP14 and the molecular mechanisms by which STAT6 and PARP14 regulate gene transcription.

Keywords

Acknowledgement

The authors dedicate this article to the memory of Shreevrat Goenka who began the PARP14/ARTD8/Coast6 field a decade ago.

References

  1. Levy, D. E., and J. E. Darnell. 2002. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3: 651-662.  https://doi.org/10.1038/nrm909
  2. Galli, S. J., M. Tsai, and A. M. Piliponsky. 2008. The development of allergic inflammation. Nature 454: 445-454.  https://doi.org/10.1038/nature07204
  3. Quelle, F. W., K. Shimoda, W. Thierfelder, C. Fischer, A. Kim, S. M. Ruben, J. L. Cleveland, J. H. Pierce, A. D. Keegan, K. Nelms, W. E. Paul, and J. N. Ihle. 1995. Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol. Cell. Biol. 15: 3336-3343.  https://doi.org/10.1128/MCB.15.6.3336
  4. Mikita, T., D. Campbell, P. Wu, K. Williamson, and U. Schindler. 1996. Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol. Cell. Biol. 16: 5811-5820.  https://doi.org/10.1128/MCB.16.10.5811
  5. Wurster, A. L., T. Tanaka, and M. J. Grusby. 2000. The biology of Stat4 and Stat6. Oncogene 19: 2577-2584.  https://doi.org/10.1038/sj.onc.1203485
  6. Hebenstreit, D., G. Wirnsberger, J. Horejs-hoeck, and A. Duschl. 2006. Signaling mechanisms , interaction partners , and target genes of STAT6. Cytokine Growth Factor Rev. 17: 173-188.  https://doi.org/10.1016/j.cytogfr.2006.01.004
  7. Takeda, K., T. Tanaka, W. Shi, M. Matsumoto, M. Minami, S. Kashiwamura, K. Nakanishi, N. Yoshida, T. Kishimoto, and S. Akira. 1996. Essential role of Stat6 in IL-4 signalling. Nature 380: 627-630.  https://doi.org/10.1038/380627a0
  8. Shimoda, K., J. van Deursen, M. Y. Sangster, S. R. Sarawar, R. T. Carson, R. A. Tripp, C. Chu, F. W. Quelle, T. Nosaka, D. A. A. Vignali, P. C. Doherty, G. Grosveld, W. E. Paul, and J. N. Ihle. 1996. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380: 630-633.  https://doi.org/10.1038/380630a0
  9. Kaplan, M. H., U. Schindler, S. T. Smiley, and M. J. Grusby. 1996. Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity 4: 313-319.  https://doi.org/10.1016/S1074-7613(00)80439-2
  10. Ouyang, W., M. Lohning, Z. Gao, M. Assenmacher, S. Ranganath, a Radbruch, and K. M. Murphy. 2000. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12: 27-37.  https://doi.org/10.1016/S1074-7613(00)80156-9
  11. Kuperman, D., B. Schofield, M. Wills-Karp, and M. J. Grusby. 1998. Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J. Exp. Med. 187: 939-948.  https://doi.org/10.1084/jem.187.6.939
  12. Akimoto, T., F. Numata, M. Tamura, Y. Takata, N. Higashida, T. Takashi, K. Takeda, and S. Akira. 1998. Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice. J. Exp. Med. 187: 1537-1542.  https://doi.org/10.1084/jem.187.9.1537
  13. Tomkinson, A., A. Kanehiro, N. Rabinovitch, A. Joetham, G. Cieslewicz, and E. W. Gelfand. 1999. The failure of STAT6-deficient mice to develop airway eosinophilia and airway hyperresponsiveness is overcome by interleukin-5. Am. J. Respir. Crit. Care Med. 160: 1283-1291.  https://doi.org/10.1164/ajrccm.160.4.9809065
  14. Webb, D. C., A. N. J. McKenzie, A. M. L. Koskinen, M. Yang, J. Mattes, and P. S. Foster. 2000. Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J. Immunol. 165: 108-113.  https://doi.org/10.4049/jimmunol.165.1.108
  15. Hoshino, A., T. Tsuji, J. Matsuzaki, T. Jinushi, S. Ashino, T. Teramura, K. Chamoto, Y. Tanaka, Y. Asakura, T. Sakurai, Y. Mita, A. Takaoka, S. Nakaike, T. Takeshima, H. Ikeda, and T. Nishimura. 2004. STAT6-mediated signaling in Th2-dependent allergic asthma: Critical role for the development of eosinophilia, airway hyper-responsiveness and mucus hypersecretion, distinct from its role in Th2 differentiation. Int. Immunol. 16: 1497-1505.  https://doi.org/10.1093/intimm/dxh151
  16. Elias, J. A., Z. Zhu, G. Chupp, and R. J. Homer. 1999. Airway remodeling in asthma. J. Clin. Invest. 104: 1001-1006.  https://doi.org/10.1172/JCI8124
  17. Kuperman, D. A., X. Huang, L. L. Koth, G. H. Chang, G. M. Dolganov, Z. Zhu, J. A. Elias, D. Sheppard, and D. J. Erle. 2002. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat. Med. 8: 885-889.  https://doi.org/10.1038/nm734
  18. McCusker, C. T., Y. Wang, J. Shan, M. W. Kinyanjui, A. Villeneuve, H. Michael, and E. D. Fixman. 2007. Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT-6 peptide. J. Immunol. 179: 2556-2564.  https://doi.org/10.4049/jimmunol.179.4.2556
  19. Chiba, Y., M. Todoroki, Y. Nishida, M. Tanabe, and M. Misawa. 2009. A novel STAT6 inhibitor AS1517499 ameliorates antigen-induced bronchial hypercontractility in mice. Am. J. Respir. Cell Mol. Biol. 41: 516-524.  https://doi.org/10.1165/rcmb.2008-0163OC
  20. Hamid, Q., M. Boguniewicz, and D. Y. M. Leung. 1994. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J. Clin. Invest. 94: 870-6.  https://doi.org/10.1172/JCI117408
  21. Palmer, C. N. A., A. D. Irvine, A. Terron-Kwiatkowski, Y. Zhao, H. Liao, S. P. Lee, D. R. Goudie, A. Sandilands, L. E. Campbell, F. J. D. Smith, G. M. O'Regan, R. M. Watson, J. E. Cecil, S. J. Bale, J. G. Compton, J. J. DiGiovanna, P. Fleckman, S. Lewis-Jones, G. Arseculeratne, A. Sergeant, C. S. Munro, B. El Houate, K. McElreavey, L. B. Halkjaer, H. Bisgaard, S. Mukhopadhyay, and W. H. I. McLean. 2006. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38: 441-446. 
  22. Baurecht, H., A. D. Irvine, N. Novak, T. Illig, B. Buhler, J. Ring, S. Wagenpfeil, and S. Weidinger. 2007. Toward a major risk factor for atopic eczema: meta-analysis of filaggrin polymorphism data. J. Allergy Clin. Immunol. 120: 1406-1412.  https://doi.org/10.1016/j.jaci.2007.08.067
  23. Howell, M. D., B. E. Kim, P. Gao, A. V. Grant, M. Boguniewicz, A. DeBenedetto, L. Schneider, L. A. Beck, K. C. Barnes, and D. Y. M. Leung. 2007. Cytokine modulation of atopic dermatitis filaggrin skin expression. J. Allergy Clin. Immunol. 120: 150-155.  https://doi.org/10.1016/j.jaci.2007.04.031
  24. Kim, B. E., D. Y. M. Leung, M. Boguniewicz, and M. D. Howell. 2008. Loricrin and involucrin expression is downregulated by Th2 cytokines through STAT-6. Clin. Immunol. 126: 332-337.  https://doi.org/10.1016/j.clim.2007.11.006
  25. Nomura, I., E. Goleva, M. D. Howell, Q. A. Hamid, P. Y. Ong, C. F. Hall, M. A. Darst, B. Gao, M. Boguniewicz, J. B. Travers, and D. Y. M. Leung. 2003. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 171: 3262-3269.  https://doi.org/10.4049/jimmunol.171.6.3262
  26. Bruns, H. A., U. Schindler, and M. H. Kaplan. 2003. Expression of a constitutively active Stat6 in vivo alters lymphocyte homeostasis with distinct effects in T and B cells. J. Immunol. Immunol. 170: 3478-3487.  https://doi.org/10.4049/jimmunol.170.7.3478
  27. Sehra, S., H. A. Bruns, A.-N. N. Ahyi, E. T. Nguyen, N. W. Schmidt, E. G. Michels, G.-U. von Bulow, and M. H. Kaplan. 2008. IL-4 is a critical determinant in the generation of allergic inflammation initiated by a constitutively active Stat6. J. Immunol. 180: 3551-3559.  https://doi.org/10.4049/jimmunol.180.5.3551
  28. Sehra, S., Y. Yao, M. D. Howell, E. T. Nguyen, G. S. Kansas, D. Y. M. Leung, J. B. Travers, and M. H. Kaplan. 2010. IL-4 regulates skin homeostasis and the predisposition toward allergic skin inflammation. J. Immunol. 184: 3186-3190.  https://doi.org/10.4049/jimmunol.0901860
  29. Turner, M. J., S. Dasilva-arnold, N. Luo, X. Hu, C. C. West, L. Sun, C. Hall, J. Bradish, M. H. Kaplan, J. B. Travers, and Y. Sun. 2014. STAT6-mediated keratitis and blepharitis: a novel murine model of ocular atopic dermatitis. Invest. Ophthalmol. Vis. Sci. 55: 3803-3808.  https://doi.org/10.1167/iovs.13-13685
  30. Chan, L. S., N. Robinson, and L. Xu. 2001. Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J. Invest. Dermatol. 117: 977-983.  https://doi.org/10.1046/j.0022-202x.2001.01484.x
  31. Zheng, T., M. H. Oh, S. Y. Oh, J. T. Schroeder, A. B. Glick, and Z. Zhu. 2009. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J. Invest. Dermatol. 129: 742-751.  https://doi.org/10.1038/jid.2008.295
  32. Sicherer, S. H., and D. Y. M. Leung. 2015. Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2014. J. Allergy Clin. Immunol. 135: 357-367.  https://doi.org/10.1016/j.jaci.2014.12.1906
  33. Amoli, M., S. Hand, A. Hajeer, K. Jones, S. Rolf, C. Sting, B. Davies, and W. Ollier. 2002. Polymorphism in the Stat6 gene encodes risk for nut allergy. Genes Immun. 3: 220-224.  https://doi.org/10.1038/sj.gene.6363872
  34. Hancock, D. B., I. Romieu, G. Y. Chiu, J.-J. Sienra-Monge, H. Li, B. E. del Rio-Navarro, and S. J. London. 2012. STAT6 and LRP1 polymorphisms are associated with food allergen sensitization in Mexican children. J. Allergy Clin. Immunol. 129: 1673-1676.  https://doi.org/10.1016/j.jaci.2012.03.012
  35. Kweon, M., M. Yamamoto, M. Kajiki, I. Takahashi, and H. Kiyono. 2000. Systemically derived large intestinal CD4+ Th2 cells play a central role in STAT6-mediated allergic diarrhea. J. Clin. Invest. 106: 199-206.  https://doi.org/10.1172/JCI8490
  36. Brandt, E. B., A. Munitz, T. Orekov, M. K. Mingler, M. Mcbride, F. D. Finkelman, and M. E. Rothenberg. 2009. Targeting IL-4 / IL-13 signaling to alleviate oral allergen - induced diarrhea. J. Allergy Clin. Immunol. 123: 53-58.  https://doi.org/10.1016/j.jaci.2008.10.001
  37. Burton, O. T., A. R. Darling, J. S. Zhou, M. Noval-Rivas, T. G. Jones, M. F. Gurish, T. A. Chatila, and H. C. Oettgen. 2013. Direct effects of IL-4 on mast cells drive their intestinal expansion and increase susceptibility to anaphylaxis in a murine model of food allergy. Mucosal Immunol. 6: 740-750.  https://doi.org/10.1038/mi.2012.112
  38. Forbes, E. E., K. Groschwitz, J. P. Abonia, E. B. Brandt, E. Cohen, C. Blanchard, R. Ahrens, L. Seidu, A. Mckenzie, R. Strait, F. D. Finkelman, P. S. Foster, K. I. Matthaei, M. E. Rothenberg, and S. P. Hogan. 2008. IL-9 - and mast cell - mediated intestinal permeability predisposes to oral antigen hypersensitivity. J. Exp. Med. 205: 897-913.  https://doi.org/10.1084/jem.20071046
  39. Chen, C., J. Lee, B. Liu, S. Ohta, P. Wang, A. V Kartashov, L. Mugge, J. P. Abonia, A. Barski, K. Izuhara, M. E. Rothenberg, F. D. Finkelman, and S. P. Hogan. 2015. Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated article induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43: 1-15.  https://doi.org/10.1016/j.immuni.2015.06.022
  40. Mathias, C. B., S. A. Hobson, M. Garcia-lloret, G. Lawson, D. Poddighe, E.-J. Freyschmidt, W. Xing, M. F. Gurish, T. A. Chatila, and H. C. Oettgen. 2011. Mechanisms of allergy and clinical immunology IgE-mediated systemic anaphylaxis and impaired tolerance to food antigens in mice with enhanced IL-4 receptor signaling. J. Allergy Clin. Immunol. 127: 795-805.  https://doi.org/10.1016/j.jaci.2010.11.009
  41. Rivas, M. N., O. T. Burton, P. Wise, L. Charbonnier, P. Georgiev, H. C. Oettgen, R. Rachid, and T. A. Chatila. 2015. Regulatory T cell reprogramming toward a Th2-cell- like lineage impairs oral tolerance and promotes regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42: 512-523.  https://doi.org/10.1016/j.immuni.2015.02.004
  42. Blanchard, C., S. Durual, M. Estienne, S. Emami, S. Vasseur, and J. C. Cuber. 2005. Eotaxin-3/CCL26 gene expression in intestinal epithelial cells is up-regulated by interleukin-4 and interleukin-13 via the signal transducer and activator of transcription 6. Int. J. Biochem. Cell Biol. 37: 2559-2573.  https://doi.org/10.1016/j.biocel.2005.06.010
  43. Furuta, G. T., and D. A. Katzka. 2015. Eosinophilic Esophagitis. N. Engl. J. Med. 373: 1640-1648.  https://doi.org/10.1056/NEJMra1502863
  44. Hoeck, J., and M. Woisetschlager. 2001. Activation of eotaxin-3/CCLl26 gene expression in human dermal fibroblasts is mediated by STAT6. J. Immunol. 167: 3216-3222.  https://doi.org/10.4049/jimmunol.167.6.3216
  45. Kagami, S., H. Saeki, M. Komine, T. Kakinuma, Y. Tsunemi, K. Nakamura, K. Sasaki, A. Asahina, and K. Tamaki. 2005. Interleukin-4 and interleukin-13 enhance CCL26 production in a human keratinocyte cell line, HaCaT cells. Clin. Exp. Immunol. 141: 459-466.  https://doi.org/10.1111/j.1365-2249.2005.02875.x
  46. Mishra, A., and M. E. Rothenberg. 2003. Intratracheal IL-13 induces eosinophilic esophagitis by an IL-5, eotaxin-1, and STAT6-dependent mechanism. Gastroenterology 125: 1419-1427.  https://doi.org/10.1016/j.gastro.2003.07.007
  47. Zhang, X., E. Cheng, X. Huo, C. Yu, Q. Zhang, T. H. Pham, D. H. Wang, S. J. Spechler, and R. F. Souza. 2012. Omeprazole blocks STAT6 binding to the eotaxin-3 promoter in eosinophilic esophagitis cells. PLoS One 7: e50037. 
  48. Niranjan, R., M. Rayapudi, A. Mishra, P. Dutt, S. Dynda, and A. Mishra. 2013. Pathogenesis of allergen-induced eosinophilic esophagitis is independent of interleukin (IL)-13. Immunol. Cell Biol. 91: 408-415.  https://doi.org/10.1038/icb.2013.21
  49. Krishnamurthy, P., J. D. Sherrill, K. Parashette, S. Goenka, M. E. Rothenberg, S. Gupta, and M. H. Kaplan. 2014. Correlation of increased PARP14 and CCL26 expression in biopsies from children with eosinophilic esophagitis. J. Allergy Clin. Immunol. 133: 577-580.  https://doi.org/10.1016/j.jaci.2013.09.031
  50. Blanchard, C., E. M. Stucke, K. Burwinkel, J. M. Caldwell, M. H. Collins, A. Ahrens, B. K. Buckmeier, S. C. Jameson, A. Greenberg, A. Kaul, J. P. Franciosi, J. P. Kushner, L. J. Martin, P. E. Putnam, J. P. Abonia, S. I. Wells, and M. E. Rothenberg. 2010. Coordinate interaction between IL-13 and epithelial differentiation cluster genes in eosinophilic esophagitis. J. Immunol. 184: 4033-4041.  https://doi.org/10.4049/jimmunol.0903069
  51. Sherrill, J. D., K. Kc, D. Wu, Z. Djukic, J. M. Caldwell, E. M. Stucke, K. A. Kemme, M. S. Costello, M. K. Mingler, C. Blanchard, M. H. Collins, J. P. Abonia, P. E. Putnam, E. S. Dellon, R. C. Orlando, S. P. Hogan, and M. E. Rothenberg. 2014. Desmoglein-1 regulates esophageal epithelial barrier function and immune responses in eosinophilic esophagitis. Mucosal Immunol. 7: 718-729.  https://doi.org/10.1038/mi.2013.90
  52. Hottiger, M. O., P. O. Hassa, B. Luscher, H. Schuler, and F. Koch-Nolte. 2010. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem. Sci. 35: 208-219.  https://doi.org/10.1016/j.tibs.2009.12.003
  53. Schreiber, V., F. Dantzer, J.-C. Ame, and G. de Murcia. 2006. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7: 517-528.  https://doi.org/10.1038/nrm1963
  54. Yelamos, J., Y. Monreal, L. Saenz, E. Aguado, V. Schreiber, R. Mota, T. Fuente, A. Minguela, P. Parrilla, G. de Murcia, E. Almarza, P. Aparicio, and J. Menissier-de Murcia. 2006. PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. EMBO J. 25: 4350-4360.  https://doi.org/10.1038/sj.emboj.7601301
  55. Rosado, M. M., E. Bennici, F. Novelli, and C. Pioli. 2013. Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology 139: 428-437.  https://doi.org/10.1111/imm.12099
  56. Saenz, L., J. J. Lozano, R. Valdor, A. Baroja-Mazo, P. Ramirez, P. Parrilla, P. Aparicio, L. Sumoy, and J. Yelamos. 2008. Transcriptional regulation by poly(ADP-ribose) polymerase-1 during T cell activation. BMC Genomics 9: 171. 
  57. Kim, M. Y., T. Zhang, and W. L. Kraus. 2005. Poly (ADP-ribosyl) ation by PARP-1 : " PAR-laying " NAD+ into a nuclear signal. Genes Dev 19: 1951-1967.  https://doi.org/10.1101/gad.1331805
  58. Oumouna, M., R. Datta, K. Oumouna-Benachour, Y. Suzuki, C. Hans, K. Matthews, K. Fallon, and H. Boulares. 2006. Poly(ADP-ribose) polymerase-1 inhibition prevents eosinophil recruitment by modulating Th2 cytokines in a murine model of allergic airway inflammation: a potential specific effect on IL-5. J. Immunol. 177: 6489-6496.  https://doi.org/10.4049/jimmunol.177.9.6489
  59. Boulares, A. H., A. J. Zoltoski, Z. A. Sherif, P. Jolly, D. Massaro, and M. E. Smulson. 2003. Gene knockout or pharmacological inhibition of poly(ADP-ribose) polymerase-1 prevents lung inflammation in a murine model of asthma. Am. J. Respir. Cell Mol. Biol. 28: 322-329.  https://doi.org/10.1165/rcmb.2001-0015OC
  60. Suzuki, Y., E. Masini, C. Mazzocca, S. Cuzzocrea, A. Ciampa, H. Suzuki, and D. Bani. 2004. Inhibition of Poly (ADP-Ribose) polymerase prevents allergen- induced asthma-like reaction in sensitized guinea pigs. Pharmacology 311: 1241-1248.  https://doi.org/10.1124/jpet.104.072546
  61. Virag, L., P. Bai, I. Bak, P. Pacher, J. G. Mabley, L. Liaudet, E. Bakondi, P. Gergely, M. Kollai, and C. Szabo. 2004. Effects of poly(ADP-ribose) polymerase inhibition on inflammatory cell migration in a murine model of asthma. Med. Sci. Monit. 10: BR77-R83. 
  62. Naura, A. S., C. P. Hans, M. Zerfaoui, D. You, S. a Cormier, M. Oumouna, and A. H. Boulares. 2008. Post-allergen challenge inhibition of poly(ADP-ribose) polymerase harbors therapeutic potential for treatment of allergic airway inflammation. Clin. Exp. Allergy 38: 839-846.  https://doi.org/10.1111/j.1365-2222.2008.02943.x
  63. Olabisi, O. A., N. Soto-Nieves, E. Nieves, T. T. C. Yang, X. Yang, R. Y. L. Yu, H. Y. Suk, F. Macian, and C.-W. Chow. 2008. Regulation of transcription factor NFAT by ADP-ribosylation. Mol. Cell. Biol. 28: 2860-2871.  https://doi.org/10.1128/MCB.01746-07
  64. Datta, R., A. S. Naura, M. Zerfaoui, Y. Errami, M. Oumouna, H. Kim, J. Ju, V. P. Ronchi, A. L. Haas, and A. H. Boulares. 2011. PARP-1 deficiency blocks IL-5 expression through calpain-dependent degradation of STAT-6 in a murine asthma model. Allergy Eur. J. Allergy Clin. Immunol. 66: 853-861.  https://doi.org/10.1111/j.1398-9995.2011.02549.x
  65. Pehrson, J.R., V. A. Fried. 1992. MacroH2A, a core histone containing a large nonhistone region. Science 5075:1398-400  https://doi.org/10.1126/science.1529340
  66. Ladurner, A. G. 2003. Inactivating chromosomes: A macro domain that minimizes transcription. Mol. Cell 12: 1-4.  https://doi.org/10.1016/S1097-2765(03)00284-3
  67. Vyas, S., I. Matic, L. Uchima, J. Rood, R. Zaja, R. T. Hay, I. Ahel, and P. Chang. 2014. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Commun. 5: 4426. 
  68. Goenka, S., and M. Boothby. 2006. Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor. Proc. Natl. Acad. Sci. U. S. A. 103: 4210-4215.  https://doi.org/10.1073/pnas.0506981103
  69. Goenka, S., H. C. Sung, and M. Boothby. 2007. Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription. J. Biol. Chem. 282: 18732-18739.  https://doi.org/10.1074/jbc.M611283200
  70. Mehrotra, P., J. P. Riley, R. Patel, F. Li, L. Voss, and S. Goenka. 2011. PARP-14 functions as a transcriptional switch for Stat6-dependent gene activation. J. Biol. Chem. 286: 1767-1776.  https://doi.org/10.1074/jbc.M110.157768
  71. Mehrotra, P., A. Hollenbeck, J. P. Riley, F. Li, R. J. Patel, N. Akhtar, and S. Goenka. 2013. Poly (ADP-ribose) polymerase 14 and its enzyme activity regulates TH2 differentiation and allergic airway disease. J. Allergy Clin. Immunol. 131: 521-531.  https://doi.org/10.1016/j.jaci.2012.06.015
  72. Bettelli, E., T. Korn, and V. K. Kuchroo. 2007. Th17 : the third member of the effector T cell trilogy. Curr. Opin. Immunol. 19: 652-657.  https://doi.org/10.1016/j.coi.2007.07.020
  73. Alcorn, J. F., C. R. Crowe, and J. K. Kolls. 2010. TH17 cells in asthma and COPD. Annu. Rev. Physiol. 72: 495-516.  https://doi.org/10.1146/annurev-physiol-021909-135926
  74. Kemeny, D. M. 2012. The role of the T follicular helper cells in allergic disease. Cell. Mol. Immunol. 9: 386-389.  https://doi.org/10.1038/cmi.2012.31
  75. Crotty, S. 2014. Review T follicular helper cell differentiation , function , and roles in disease. Immunity 41: 529-542.  https://doi.org/10.1016/j.immuni.2014.10.004
  76. Riley, J. P., A. Kulkarni, P. Mehrotra, B. Koh, N. B. Perumal, M. H. Kaplan, and S. Goenka. 2013. PARP-14 binds specific DNA sequences to promote Th2 cell gene expression. PLoS One 8: e83127. 
  77. Mehrotra, P., P. Krishnamurthy, J. Sun, S. Goenka, and M. H. Kaplan. 2015. Poly-ADP-ribosyl polymerase-14 promotes T helper 17 and follicular T helper development. Immunology 146: 537-546.  https://doi.org/10.1111/imm.12515
  78. Cho, S. H., S. Goenka, T. Henttinen, P. Gudapati, A. Reinikainen, C. M. Eischen, R. Lahesmaa, and M. Boothby. 2009. PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood 113: 2416-2425.  https://doi.org/10.1182/blood-2008-03-144121
  79. Blanchard, C., N. Wang, K. F. Stringer, A. Mishra, P. C. Fulkerson, J. P. Abonia, S. C. Jameson, C. Kirby, M. R. Konikoff, M. H. Collins, M. B. Cohen, R. Akers, S. P. Hogan, A. H. Assa'ad, P. E. Putnam, B. J. Aronow, and M. E. Rothenberg. 2006. Eotaxin-3 and a uniquely conserved gene expression profile in eosinophilic esophagitis. J. Clin. Invest. 116: 536-547.  https://doi.org/10.1172/JCI26679
  80. Gupta, S. K., J. F. Fitzgerald, T. Kondratyuk, and H. HogenEsch. 2006. Cytokine expression in normal and inflamed esophageal mucosa: a study into the pathogenesis of allergic eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 42: 22-26.  https://doi.org/10.1097/01.mpg.0000188740.38757.d2
  81. Nasta, F., F. Laudisi, M. Sambucci, M. M. Rosado and C. Pioli. 2010. Increased Foxp3+ regulatory T cells in poly (ADP-ribose) polymerase -1 deficiency. J. Immunol. 184: 3470-3477.  https://doi.org/10.4049/jimmunol.0901568
  82. Bai, P., C. Hegedus, E. Szabo, L. Gyure, E. Bakondi, A. Brunyanszki, S. Gergely, C. Szabo, and L. Virag. 2009. Poly (ADP-Ribose ) polymerase mediates inflammation in a mouse model of contact hypersensitivity. J. Invest. Dermatol. 129: 234-238.  https://doi.org/10.1038/jid.2008.196
  83. Brunyanszki, A., C. Hegedus, M. Szanto, K. Erdelyi, K. Kovacs, V. Schreiber, S. Gergely, B. Kiss, E. Szabo, L. Virag, and P. Bai. 2010. Genetic ablation of PARP-1 protects against oxazolone-induced contact hypersensitivity by modulating oxidative stress. J. Invest. Dermatol. 130: 2629-2637. https://doi.org/10.1038/jid.2010.190