DOI QR코드

DOI QR Code

Roles of RUNX1 and PU.1 in CCR3 Transcription

  • Su-Kang Kong (Department of Bionano Technology, Hanyang University) ;
  • Byung Soo Kim (Department of Bionano Technology, Hanyang University) ;
  • Sae Mi Hwang (Department of Bionano Technology, Hanyang University) ;
  • Hyune Hwan Lee (Department of Bioscience and Biotechnology and Protein Research Center of GRRC, College of Natural Sciences, Hankuk University of Foreign Studies) ;
  • Il Yup Chung (Department of Bionano Technology, Hanyang University)
  • Received : 2016.02.20
  • Accepted : 2016.04.18
  • Published : 2016.06.30

Abstract

CCR3 is a chemokine receptor that mediates the accumulation of allergic inflammatory cells, including eosinophils and Th2 cells, at inflamed sites. The regulatory sequence of the CCR3 gene, contains two Runt-related transcription factor (RUNX) 1 sites and two PU.1 sites, in addition to a functional GATA site for transactivation of the CCR3 gene. In the present study, we examined the effects of the cis-acting elements of RUNX1 and PU.1 on transcription of the gene in EoL-1 eosinophilic cells and Jurkat T cells, both of which expressed functional surface CCR3 and these two transcription factors. Introduction of RUNX1 siRNA or PU.1 siRNA resulted in a modest decrease in CCR3 reporter activity in both cell types, compared with transfection of GATA-1 siRNA. Cotransfection of the two siRNAs led to inhibition in an additive manner. EMSA analysis showed that RUNX1, in particular, bound to its binding motifs. Mutagenesis analysis revealed that all point mutants lacking RUNX1- and PU.1-binding sites exhibited reduced reporter activities. These results suggest that RUNX1 and PU.1 participate in transcriptional regulation of the CCR3 gene.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2058266 to IYC).

References

  1. Pease, J. E., and T. J. Williams. 2006. Chemokines and their receptors in allergic disease. J. Allergy Clin. Immunol. 118: 305-318.  https://doi.org/10.1016/j.jaci.2006.06.010
  2. Rothenberg, M. E., and S. P. Hogan. 2006. The eosinophil. Annu. Rev. Immunol. 24: 147-174.  https://doi.org/10.1146/annurev.immunol.24.021605.090720
  3. Willems, L. I., and A. P. Ijzerman. 2010. Small molecule antagonists for chemokine CCR3 receptors. Med. Res. Rev. 30: 778-817.  https://doi.org/10.1002/med.20181
  4. Mori, Y., H. Iwasaki, K. Kohno, G. Yoshimoto, Y. Kikushige, A. Okeda, N. Uike, H. Niiro, K. Takenaka, K. Nagafuji, T. Miyamoto, M. Harada, K. Takatsu, and K. Akashi. 2009. Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. J. Exp. Med. 206: 183-193.  https://doi.org/10.1084/jem.20081756
  5. Voehringer, D., R. N. van, and R. M. Locksley. 2007. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J. Leukoc. Biol. 81: 1434-1444.  https://doi.org/10.1189/jlb.1106686
  6. Kim, B. S., T. G. Uhm, S. K. Lee, S. H. Lee, J. H. Kang, C. S. Park, and I. Y. Chung. 2010. The crucial role of GATA-1 in CCR3 gene transcription: modulated balance by multiple GATA elements in the CCR3 regulatory region. J. Immunol. 185: 6866-6875.  https://doi.org/10.4049/jimmunol.1001037
  7. Vijh, S., D. E. Dayhoff, C. E. Wang, Z. Imam, P. K. Ehrenberg, and N. L. Michael. 2002. Transcription regulation of human chemokine receptor CCR3: evidence for a rare TATA-less promoter structure conserved between drosophila and humans. Genomics 80: 86-95.  https://doi.org/10.1006/geno.2002.6801
  8. Zimmermann, N., B. L. Daugherty, J. L. Kavanaugh, F. Y. El-Awar, E. A. Moulton, and M. E. Rothenberg. 2000. Analysis of the CC chemokine receptor 3 gene reveals a complex 5' exon organization, a functional role for untranslated exon 1, and a broadly active promoter with eosinophil-selective elements. Blood 96: 2346-2354.  https://doi.org/10.1182/blood.V96.7.2346
  9. Scotet, E., S. Schroeder, and A. Lanzavecchia. 2001. Molecular regulation of CC-chemokine receptor 3 expression in human T helper 2 cells. Blood 98: 2568-2570.  https://doi.org/10.1182/blood.V98.8.2568
  10. Klemsz, M. J., S. R. McKercher, A. Celada, B. C. Van, and R. A. Maki. 1990. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61: 113-124.  https://doi.org/10.1016/0092-8674(90)90219-5
  11. Scott, E. W., M. C. Simon, J. Anastasi, and H. Singh. 1994. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265: 1573-1577.  https://doi.org/10.1126/science.8079170
  12. McKercher, S. R., B. E. Torbett, K. L. Anderson, G. W. Henkel, D. J. Vestal, H. Baribault, M. Klemsz, A. J. Feeney, G. E. Wu, C. J. Paige, and R. A. Maki. 1996. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15: 5647-5658.  https://doi.org/10.1002/j.1460-2075.1996.tb00949.x
  13. DeKoter, R. P., J. C. Walsh, and H. Singh. 1998. PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J. 17: 4456-4468.  https://doi.org/10.1093/emboj/17.15.4456
  14. McNagny, K. M., M. H. Sieweke, G. Doderlein, T. Graf, and C. Nerlov. 1998. Regulation of eosinophil-specific gene expression by a C/EBP-Ets complex and GATA-1. EMBO J. 17: 3669-3680.  https://doi.org/10.1093/emboj/17.13.3669
  15. Kodandapani, R., F. Pio, C. Z. Ni, G. Piccialli, M. Klemsz, S. McKercher, R. A. Maki, and K. R. Ely. 1996. A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 380: 456-460.  https://doi.org/10.1038/380456a0
  16. Growney, J. D., H. Shigematsu, Z. Li, B. H. Lee, J. Adelsperger, R. Rowan, D. P. Curley, J. L. Kutok, K. Akashi, I. R. Williams, N. A. Speck, and D. G. Gilliland. 2005. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106: 494-504.  https://doi.org/10.1182/blood-2004-08-3280
  17. Collins, A., D. R. Littman, and I. Taniuchi. 2009. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat. Rev. Immunol. 9: 106-115.  https://doi.org/10.1038/nri2489
  18. Mukai, K., M. J. BenBarak, M. Tachibana, K. Nishida, H. Karasuyama, I. Taniuchi, and S. J. Galli. 2012. Critical role of P1-Runx1 in mouse basophil development. Blood 120: 76-85.  https://doi.org/10.1182/blood-2011-12-399113
  19. Meyers, S., J. R. Downing, and S. W. Hiebert. 1993. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol. Cell. Biol. 13: 6336-6345.  https://doi.org/10.1128/MCB.13.10.6336
  20. Kong, S. K., B. S. Kim, T. G. Uhm, W. Lee, G. R. Lee, C. S. Park, C. H. Lee, and I. Y. Chung. 2013. Different GATA factors dictate CCR3 transcription in allergic inflammatory cells in a cell type-specific manner. J. Immunol. 190: 5747-5756.  https://doi.org/10.4049/jimmunol.1203542
  21. Elagib, K. E., F. K. Racke, M. Mogass, R. Khetawat, L. L. Delehanty, and A. N. Goldfarb. 2003. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 101: 4333-4341.  https://doi.org/10.1182/blood-2002-09-2708
  22. Anderson, K. L., K. A. Smith, F. Pio, B. E. Torbett, and R. A. Maki. 1998. Neutrophils deficient in PU.1 do not terminally differentiate or become functionally competent. Blood 92: 1576-1585.  https://doi.org/10.1182/blood.V92.5.1576
  23. Du, J., M. J. Stankiewicz, Y. Liu, Q. Xi, J. E. Schmitz, J. A. Lekstrom-Himes, and S. J. Ackerman. 2002. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPε isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J. Biol. Chem. 277: 43481-43494. https://doi.org/10.1074/jbc.M204777200