과제정보
This work was supported by grants from the National Medical Research Council (CBRG11nov101), the National Research Foundation (NRF-CRP-2010-03) and the National University Health System (T1-2014 Oct-12) of Singapore (to YZ).
참고문헌
- Dickinson, R. J., and S. M. Keyse. 2006. Diverse physiological functions for dual-specificity MAP kinase phosphatases. J. Cell Sci. 119: 4607-4615. https://doi.org/10.1242/jcs.03266
- Wagner, E. F., and A. R. Nebreda. 2009. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9: 537-549. https://doi.org/10.1038/nrc2694
- Zhang, Y. L., and C. Dong. 2005. MAP kinases in immune responses. Cell. Mol. Immunol. 2: 20-27.
- Chen, Z., T. B. Gibson, F. Robinson, L. Silvestro, G. Pearson, B. Xu, A. Wright, C. Vanderbilt, and M. H. Cobb. 2001. MAP kinases. Chem. Rev. 101: 2449-2476. https://doi.org/10.1021/cr000241p
- Cargnello, M., and P. P. Roux. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75: 50-83. https://doi.org/10.1128/MMBR.00031-10
- Kuo, W. L., C. J. Duke, M. K. Abe, E. L. Kaplan, S. Gomes, and M. R. Rosner. 2004. ERK7 expression and kinase activity is regulated by the ubiquitin-proteosome pathway. J. Biol. Chem. 279: 23073-23081. https://doi.org/10.1074/jbc.M313696200
- Kyriakis, J. M., P. Banerjee, E. Nikolakaki, T. Dai, E. A. Rubie, M. F. Ahmad, J. Avruch, and J. R. Woodgett. 1994. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156-160. https://doi.org/10.1038/369156a0
- Lechner, C., M. A. Zahalka, J. F. Giot, N. P. Moller, and A. Ullrich. 1996. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc. Natl. Acad. Sci. U. S. A. 93: 4355-4359. https://doi.org/10.1073/pnas.93.9.4355
- Dhillon, A. S., S. Hagan, O. Rath, and W. Kolch. 2007. MAP kinase signalling pathways in cancer. Oncogene 26: 3279-3290. https://doi.org/10.1038/sj.onc.1210421
- Wada, T., and J. M. Penninger. 2004. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23: 2838-2849. https://doi.org/10.1038/sj.onc.1207556
- Engelberg, D. 2004. Stress-activated protein kinases-tumor suppressors or tumor initiators? Semin. Cancer Biol. 14: 271-282. https://doi.org/10.1016/j.semcancer.2004.04.006
- Liu, Y., E. G. Shepherd, and L. D. Nelin. 2007. MAPK phosphatases--regulating the immune response. Nat. Rev. Immunol. 7: 202-212. https://doi.org/10.1038/nri2035
- Schubbert, S., K. Shannon, and G. Bollag. 2007. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 7: 295-308. https://doi.org/10.1038/nrc2109
- Goffin, J. R., and K. Zbuk. 2013. Epidermal growth factor receptor: pathway, therapies, and pipeline. Clin. Ther. 35: 1282-1303. https://doi.org/10.1016/j.clinthera.2013.08.007
- Normanno, N., L. A. De, C. Bianco, L. Strizzi, M. Mancino, M. R. Maiello, A. Carotenuto, F. G. De, F. Caponigro, and D. S. Salomon. 2006. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366: 2-16. https://doi.org/10.1016/j.gene.2005.10.018
- Bancroft, C. C., Z. Chen, G. Dong, J. B. Sunwoo, N. Yeh, C. Park, and W. C. Van. 2001. Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-kappaB signal pathways. Clin. Cancer Res. 7: 435-442.
- Treinies, I., H. F. Paterson, S. Hooper, R. Wilson, and C. J. Marshall. 1999. Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal To stimulate DNA synthesis. Mol. Cell. Biol. 19: 321-329. https://doi.org/10.1128/MCB.19.1.321
- Lu, Z., and S. Xu. 2006. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58: 621-631. https://doi.org/10.1080/15216540600957438
- Brancho, D., N. Tanaka, A. Jaeschke, J. J. Ventura, N. Kelkar, Y. Tanaka, M. Kyuuma, T. Takeshita, R. A. Flavell, and R. J. Davis. 2003. Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 17: 1969-1978. https://doi.org/10.1101/gad.1107303
- Bulavin, D. V., C. Phillips, B. Nannenga, O. Timofeev, L. A. Donehower, C. W. Anderson, E. Appella, and A. J. Fornace, Jr. 2004. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat. Genet. 36: 343-350. https://doi.org/10.1038/ng1317
- Timofeev, O., T. Y. Lee, and D. V. Bulavin. 2005. A subtle change in p38 MAPK activity is sufficient to suppress in vivo tumorigenesis. Cell Cycle 4: 118-120. https://doi.org/10.4161/cc.4.1.1342
- Han, J., and P. Sun. 2007. The pathways to tumor suppression via route p38. Trends Biochem. Sci. 32: 364-371. https://doi.org/10.1016/j.tibs.2007.06.007
- Ventura, J. J., S. Tenbaum, E. Perdiguero, M. Huth, C. Guerra, M. Barbacid, M. Pasparakis, and A. R. Nebreda. 2007. p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat. Genet. 39: 750-758. https://doi.org/10.1038/ng2037
- Cellurale, C., G. Sabio, N. J. Kennedy, M. Das, M. Barlow, P. Sandy, T. Jacks, and R. J. Davis. 2011. Requirement of c-Jun NH(2)-terminal kinase for Ras-initiated tumor formation. Mol. Cell. Biol. 31: 1565-1576. https://doi.org/10.1128/MCB.01122-10
- Chang, Q., Y. Zhang, K. J. Beezhold, D. Bhatia, H. Zhao, J. Chen, V. Castranova, X. Shi, and F. Chen. 2009. Sustained JNK1 activation is associated with altered histone H3 methylations in human liver cancer. J. Hepatol. 50: 323-333. https://doi.org/10.1016/j.jhep.2008.07.037
- Hui, L., K. Zatloukal, H. Scheuch, E. Stepniak, and E. F. Wagner. 2008. Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J. Clin. Invest. 118: 3943-3953. https://doi.org/10.1172/JCI37156
- Kennedy, N. J., and R. J. Davis. 2003. Role of JNK in tumor development. Cell Cycle 2: 199-201.
- Derijard, B., M. Hibi, I. H. Wu, T. Barrett, B. Su, T. Deng, M. Karin, and R. J. Davis. 1994. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025-1037. https://doi.org/10.1016/0092-8674(94)90380-8
- Johnson, R., B. Spiegelman, D. Hanahan, and R. Wisdom. 1996. Cellular transformation and malignancy induced by ras require c-jun. Mol. Cell. Biol. 16: 4504-4511. https://doi.org/10.1128/MCB.16.8.4504
- Sakurai, T., S. Maeda, L. Chang, and M. Karin. 2006. Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc. Natl. Acad. Sci. U. S. A. 103: 10544-10551. https://doi.org/10.1073/pnas.0603499103
- Chen, N., M. Nomura, Q. B. She, W. Y. Ma, A. M. Bode, L. Wang, R. A. Flavell, and Z. Dong. 2001. Suppression of skin tumorigenesis in c-Jun NH(2)-terminal kinase-2-deficient mice. Cancer Res. 61: 3908-3912.
- She, Q. B., N. Chen, A. M. Bode, R. A. Flavell, and Z. Dong. 2002. Deficiency of c-Jun-NH(2)-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 62: 1343-1348.
- Tournier, C., P. Hess, D. D. Yang, J. Xu, T. K. Turner, A. Nimnual, D. Bar-Sagi, S. N. Jones, R. A. Flavell, and R. J. Davis. 2000. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870-874. https://doi.org/10.1126/science.288.5467.870
- Wang, Y., Q. Y. He, S. W. Tsao, Y. H. Cheung, A. Wong, and J. F. Chiu. 2008. Cytokeratin 8 silencing in human nasopharyngeal carcinoma cells leads to cisplatin sensitization. Cancer Lett. 265: 188-196. https://doi.org/10.1016/j.canlet.2008.02.015
- Picco, V., and G. Pages. 2013. Linking JNK Activity to the DNA Damage Response. Genes Cancer 4: 360-368. https://doi.org/10.1177/1947601913486347
- Sun, T., D. Li, L. Wang, L. Xia, J. Ma, Z. Guan, G. Feng, and X. Zhu. 2011. c-Jun NH2-terminal kinase activation is essential for up-regulation of LC3 during ceramide-induced autophagy in human nasopharyngeal carcinoma cells. J. Transl. Med. 9: 161.
- Xu, P., M. Das, J. Reilly, and R. J. Davis. 2011. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev. 25: 310-322. https://doi.org/10.1101/gad.1984311
- Ventura, J. J., A. Hubner, C. Zhang, R. A. Flavell, K. M. Shokat, and R. J. Davis. 2006. Chemical genetic analysis of the time course of signal transduction by JNK. Mol. Cell 21: 701-710. https://doi.org/10.1016/j.molcel.2006.01.018
- Ebisuya, M., K. Kondoh, and E. Nishida. 2005. The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J. Cell Sci. 118: 2997-3002. https://doi.org/10.1242/jcs.02505
- Camps, M., A. Nichols, and S. Arkinstall. 2000. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 14: 6-16. https://doi.org/10.1096/fasebj.14.1.6
- Farooq, A., and M. M. Zhou. 2004. Structure and regulation of MAPK phosphatases. Cell. Signal. 16: 769-779. https://doi.org/10.1016/j.cellsig.2003.12.008
- Kondoh, K., and E. Nishida. 2007. Regulation of MAP kinases by MAP kinase phosphatases. Biochim. Biophys. Acta 1773: 1227-1237. https://doi.org/10.1016/j.bbamcr.2006.12.002
- Owens, D. M., and S. M. Keyse. 2007. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26: 3203-3213. https://doi.org/10.1038/sj.onc.1210412
- Keyse, S. M. 2008. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 27: 253-261. https://doi.org/10.1007/s10555-008-9123-1
- Vicent, S., M. Garayoa, J. M. Lopez-Picazo, M. D. Lozano, G. Toledo, F. B. Thunnissen, R. G. Manzano, and L. M. Montuenga. 2004. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin. Cancer Res. 10: 3639-3649. https://doi.org/10.1158/1078-0432.CCR-03-0771
- Bang, Y. J., J. H. Kwon, S. H. Kang, J. W. Kim, and Y. C. Yang. 1998. Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma. Biochem. Biophys. Res. Commun. 250: 43-47. https://doi.org/10.1006/bbrc.1998.9256
- Liao, Q., J. Guo, J. Kleeff, A. Zimmermann, M. W. Buchler, M. Korc, and H. Friess. 2003. Down-regulation of the dual-specificity phosphatase MKP-1 suppresses tumorigenicity of pancreatic cancer cells. Gastroenterology 124: 1830-1845. https://doi.org/10.1016/S0016-5085(03)00398-6
- Wang, H. Y., Z. Cheng, and C. C. Malbon. 2003. Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett. 191: 229-237. https://doi.org/10.1016/S0304-3835(02)00612-2
- Denkert, C., W. D. Schmitt, S. Berger, A. Reles, S. Pest, A. Siegert, W. Lichtenegger, M. Dietel, and S. Hauptmann. 2002. Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. Int. J. Cancer 102: 507-513. https://doi.org/10.1002/ijc.10746
- Tsujita, E., A. Taketomi, T. Gion, Y. Kuroda, K. Endo, A. Watanabe, H. Nakashima, S. Aishima, S. Kohnoe, and Y. Maehara. 2005. Suppressed MKP-1 is an independent predictor of outcome in patients with hepatocellular carcinoma. Oncology 69: 342-347. https://doi.org/10.1159/000089766
- Givant-Horwitz, V., B. Davidson, J. M. Goderstad, J. M. Nesland, C. G. Trope, and R. Reich. 2004. The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecol. Oncol. 93: 517-523. https://doi.org/10.1016/j.ygyno.2004.03.009
- Kim, S. C., J. S. Hahn, Y. H. Min, N. C. Yoo, Y. W. Ko, and W. J. Lee. 1999. Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood 93: 3893-3899. https://doi.org/10.1182/blood.V93.11.3893
- Yokoyama, A., H. Karasaki, N. Urushibara, K. Nomoto, Y. Imai, K. Nakamura, Y. Mizuno, K. Ogawa, and K. Kikuchi. 1997. The characteristic gene expressions of MAPK phosphatases 1 and 2 in hepatocarcinogenesis, rat ascites hepatoma cells, and regenerating rat liver. Biochem. Biophys. Res. Commun. 239: 746-751. https://doi.org/10.1006/bbrc.1997.7547
- Yip-Schneider, M. T., A. Lin, and M. S. Marshall. 2001. Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2. Biochem. Biophys. Res. Commun. 280: 992-997. https://doi.org/10.1006/bbrc.2001.4243
- Sieben, N. L., J. Oosting, A. M. Flanagan, J. Prat, G. M. Roemen, S. M. Kolkman-Uljee, E. R. van, C. J. Cornelisse, G. J. Fleuren, and E. M. van. 2005. Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. J. Clin. Oncol. 23: 7257-7264. https://doi.org/10.1200/JCO.2005.02.2541
- Chitale, D., Y. Gong, B. S. Taylor, S. Broderick, C. Brennan, R. Somwar, B. Golas, L. Wang, N. Motoi, J. Szoke, J. M. Reinersman, J. Major, C. Sander, V. E. Seshan, M. F. Zakowski, V. Rusch, W. Pao, W. Gerald, and M. Ladanyi. 2009. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 28: 2773-2783. https://doi.org/10.1038/onc.2009.135
- Armes, J. E., F. Hammet, S. M. de, J. Ciciulla, S. J. Ramus, W. K. Soo, A. Mahoney, N. Yarovaya, M. A. Henderson, K. Gish, A. M. Hutchins, G. R. Price, and D. J. Venter. 2004. Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers. Oncogene 23: 5697-5702. https://doi.org/10.1038/sj.onc.1207740
- Waha, A., J. Felsberg, W. Hartmann, K. A. von dem, T. Mikeska, S. Joos, M. Wolter, A. Koch, P. S. Yan, E. Endl, O. D. Wiestler, G. Reifenberger, T. Pietsch, and A. Waha. 2010. Epigenetic downregulation of mitogen-activated protein kinase phosphatase MKP-2 relieves its growth suppressive activity in glioma cells. Cancer Res. 70: 1689-1699. https://doi.org/10.1158/0008-5472.CAN-09-3218
- Staege, M. S., K. Muller, S. Kewitz, I. Volkmer, C. Mauz-Korholz, T. Bernig, and D. Korholz. 2014. Expression of dual-specificity phosphatase 5 pseudogene 1 (DUSP5P1) in tumor cells. PLoS One 9: e89577. https://doi.org/10.1371/journal.pone.0089577
- Furukawa, T., M. Sunamura, F. Motoi, S. Matsuno, and A. Horii. 2003. Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. Am. J. Pathol. 162: 1807-1815. https://doi.org/10.1016/S0002-9440(10)64315-5
- Furukawa, T., T. Yatsuoka, E. M. Youssef, T. Abe, T. Yokoyama, S. Fukushige, E. Soeda, M. Hoshi, Y. Hayashi, M. Sunamura, M. Kobari, and A. Horii. 1998. Genomic analysis of DUSP6, a dual specificity MAP kinase phosphatase, in pancreatic cancer. Cytogenet. Cell Genet. 82: 156-159. https://doi.org/10.1159/000015091
- Okudela, K., T. Yazawa, T. Woo, M. Sakaeda, J. Ishii, H. Mitsui, H. Shimoyamada, H. Sato, M. Tajiri, N. Ogawa, M. Masuda, T. Takahashi, H. Sugimura, and H. Kitamura. 2009. Down-regulation of DUSP6 expression in lung cancer: its mechanism and potential role in carcinogenesis. Am. J. Pathol. 175: 867-881. https://doi.org/10.2353/ajpath.2009.080489
- Warmka, J. K., L. J. Mauro, and E. V. Wattenberg. 2004. Mitogen-activated protein kinase phosphatase-3 is a tumor promoter target in initiated cells that express oncogenic Ras. J. Biol. Chem. 279: 33085-33092. https://doi.org/10.1074/jbc.M403120200
- Chan, D. W., V. W. Liu, G. S. Tsao, K. M. Yao, T. Furukawa, K. K. Chan, and H. Y. Ngan. 2008. Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29: 1742-1750. https://doi.org/10.1093/carcin/bgn167
- Lucci, M. A., R. Orlandi, T. Triulzi, E. Tagliabue, A. Balsari, and E. Villa-Moruzzi. 2010. Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Cell. Oncol. 32: 361-372. https://doi.org/10.1155/2010/386484
- Cui, Y., I. Parra, M. Zhang, S. G. Hilsenbeck, A. Tsimelzon, T. Furukawa, A. Horii, Z. Y. Zhang, R. I. Nicholson, and S. A. Fuqua. 2006. Elevated expression of mitogen-activated protein kinase phosphatase 3 in breast tumors: a mechanism of tamoxifen resistance. Cancer Res. 66: 5950-5959. https://doi.org/10.1158/0008-5472.CAN-05-3243
- Wong, V. C., H. Chen, J. M. Ko, K. W. Chan, Y. P. Chan, S. Law, D. Chua, D. L. Kwong, H. L. Lung, G. Srivastava, J. C. Tang, S. W. Tsao, E. R. Zabarovsky, E. J. Stanbridge, and M. L. Lung. 2012. Tumor suppressor dual-specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial-mesenchymal transition (EMT)-associated phenotype. Int. J. Cancer 130: 83-95. https://doi.org/10.1002/ijc.25970
- Levy-Nissenbaum, O., O. Sagi-Assif, D. Kapon, S. Hantisteanu, T. Burg, P. Raanani, A. Avigdor, I. Ben-Bassat, and I. P. Witz. 2003. Dual-specificity phosphatase Pyst2-L is constitutively highly expressed in myeloid leukemia and other malignant cells. Oncogene 22: 7649-7660. https://doi.org/10.1038/sj.onc.1206971
- Liu, Y., J. Lagowski, A. Sundholm, A. Sundberg, and M. Kulesz-Martin. 2007. Microtubule disruption and tumor suppression by mitogen-activated protein kinase phosphatase 4. Cancer Res. 67: 10711-10719. https://doi.org/10.1158/0008-5472.CAN-07-1968
- Krishnan, A. V., J. Moreno, L. Nonn, S. Swami, D. M. Peehl, and D. Feldman. 2007. Calcitriol as a chemopreventive and therapeutic agent in prostate cancer: role of anti-inflammatory activity. J. Bone Miner. Res. 22 Suppl 2: V74-V80. https://doi.org/10.1359/jbmr.07s213
- Nonn, L., D. Duong, and D. M. Peehl. 2007. Chemopreventive anti-inflammatory activities of curcumin and other phytochemicals mediated by MAP kinase phosphatase-5 in prostate cells. Carcinogenesis 28: 1188-1196. https://doi.org/10.1093/carcin/bgl241
- Nonn, L., L. Peng, D. Feldman, and D. M. Peehl. 2006. Inhibition of p38 by vitamin D reduces interleukin-6 production in normal prostate cells via mitogen-activated protein kinase phosphatase 5: implications for prostate cancer prevention by vitamin D. Cancer Res. 66: 4516-4524. https://doi.org/10.1158/0008-5472.CAN-05-3796
- Nomura, M., K. Shiiba, C. Katagiri, I. Kasugai, K. Masuda, I. Sato, M. Sato, Y. Kakugawa, E. Nomura, K. Hayashi, Y. Nakamura, T. Nagata, T. Otsuka, R. Katakura, Y. Yamashita, M. Sato, N. Tanuma, and H. Shima. 2012. Novel function of MKP-5/DUSP10, a phosphatase of stress-activated kinases, on ERK-dependent gene expression, and upregulation of its gene expression in colon carcinomas. Oncol. Rep. 28: 931-936.
- Hoornaert, I., P. Marynen, J. Goris, R. Sciot, and M. Baens. 2003. MAPK phosphatase DUSP16/MKP-7, a candidate tumor suppressor for chromosome region 12p12-13, reduces BCR-ABLinduced transformation. Oncogene 22: 7728-7736. https://doi.org/10.1038/sj.onc.1207089
- Grepmeier, U., W. Dietmaier, J. Merk, P. J. Wild, E. C. Obermann, M. Pfeifer, F. Hofstaedter, A. Hartmann, and M. Woenckhaus. 2005. Deletions at chromosome 2q and 12p are early and frequent molecular alterations in bronchial epithelium and NSCLC of long-term smokers. Int. J. Oncol. 27: 481-488. https://doi.org/10.3892/ijo.27.2.481
- Kibel, A. S., J. Huagen, C. Guo, W. B. Isaacs, Y. Yan, K. J. Pienta, and P. J. Goodfellow. 2004. Expression mapping at 12p12-13 in advanced prostate carcinoma. Int. J. Cancer 109: 668-672. https://doi.org/10.1002/ijc.20060
- Zaidi, S. K., C. R. Dowdy, A. J. van Wijnen, J. B. Lian, A. Raza, J. L. Stein, C. M. Croce, and G. S. Stein. 2009. Altered Runx1 subnuclear targeting enhances myeloid cell proliferation and blocks differentiation by activating a miR-24/MKP-7/MAPK network. Cancer Res. 69: 8249-8255. https://doi.org/10.1158/0008-5472.CAN-09-1567
- Lee, S., N. Syed, J. Taylor, P. Smith, B. Griffin, M. Baens, M. Bai, K. Bourantas, J. Stebbing, K. Naresh, M. Nelson, M. Tuthill, M. Bower, E. Hatzimichael, and T. Crook. 2010. DUSP16 is an epigenetically regulated determinant of JNK signalling in Burkitt's lymphoma. Br. J. Cancer 103: 265-274. https://doi.org/10.1038/sj.bjc.6605711
- Zhou, J. Y., Y. Liu, and G. S. Wu. 2006. The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Res. 66: 4888-4894. https://doi.org/10.1158/0008-5472.CAN-05-4229
- Shi, H., E. Boadu, F. Mercan, A. M. Le, R. J. Flach, L. Zhang, K. J. Tyner, B. B. Olwin, and A. M. Bennett. 2010. MAP kinase phosphatase-1 deficiency impairs skeletal muscle regeneration and exacerbates muscular dystrophy. FASEB J. 24: 2985-2997. https://doi.org/10.1096/fj.09-150045
- Chi, H., S. P. Barry, R. J. Roth, J. J. Wu, E. A. Jones, A. M. Bennett, and R. A. Flavell. 2006. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc. Natl. Acad. Sci. U. S. A. 103: 2274-2279. https://doi.org/10.1073/pnas.0510965103
- Zhang, Y., J. M. Reynolds, S. H. Chang, N. Martin-Orozco, Y. Chung, R. I. Nurieva, and C. Dong. 2009. MKP-1 is necessary for T cell activation and function. J. Biol. Chem. 284: 30815-30824. https://doi.org/10.1074/jbc.M109.052472
- Boutros, T., E. Chevet, and P. Metrakos. 2008. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol. Rev. 60: 261-310. https://doi.org/10.1124/pr.107.00106
- Magi-Galluzzi, C., R. Mishra, M. Fiorentino, R. Montironi, H. Yao, P. Capodieci, K. Wishnow, I. Kaplan, P. J. Stork, and M. Loda. 1997. Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Lab. Invest. 76: 37-51.
- Wang, H. Y., Z. Cheng, and C. C. Malbon. 2003. Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett. 191: 229-237. https://doi.org/10.1016/S0304-3835(02)00612-2
- Candas, D., C. L. Lu, M. Fan, F. Y. Chuang, C. Sweeney, A. D. Borowsky, and J. J. Li. 2014. Mitochondrial MKP1 is a target for therapy-resistant HER2-positive breast cancer cells. Cancer Res. 74: 7498-7509. https://doi.org/10.1158/0008-5472.CAN-14-0844
- Rojo, F., I. Gonzalez-Navarrete, R. Bragado, A. Dalmases, S. Menendez, M. Cortes-Sempere, C. Suarez, C. Oliva, S. Servitja, V. Rodriguez-Fanjul, I. Sanchez-Perez, C. Campas, J. M. Corominas, I. Tusquets, B. Bellosillo, S. Serrano, R. Perona, A. Rovira, and J. Albanell. 2009. Mitogen-activated protein kinase phosphatase-1 in human breast cancer independently predicts prognosis and is repressed by doxorubicin. Clin. Cancer Res. 15: 3530-3539. https://doi.org/10.1158/1078-0432.CCR-08-2070
- Small, G. W., Y. Y. Shi, L. S. Higgins, and R. Z. Orlowski. 2007. Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res. 67: 4459-4466. https://doi.org/10.1158/0008-5472.CAN-06-2644
- Cimas, F. J., J. L. Callejas-Valera, R. Pascual-Serra, J. Garcia-Cano, E. Garcia-Gil, De la Cruz-Morcillo MA, M. Ortega-Muelas, L. Serrano-Oviedo, J. S. Gutkind, and R. Sanchez-Prieto. 2015. MKP1 mediates chemosensitizer effects of E1a in response to cisplatin in non-small cell lung carcinoma cells. Oncotarget 6: 44095-44107. https://doi.org/10.18632/oncotarget.6574
- Montagut, C., M. Iglesias, M. Arumi, B. Bellosillo, M. Gallen, A. Martinez-Fernandez, L. Martinez-Aviles, I. Canadas, A. Dalmases, E. Moragon, L. Lema, S. Serrano, A. Rovira, F. Rojo, J. Bellmunt, and J. Albanell. 2010. Mitogen-activated protein kinase phosphatase-1 (MKP-1) impairs the response to anti-epidermal growth factor receptor (EGFR) antibody cetuximab in metastatic colorectal cancer patients. Br. J. Cancer 102: 1137-1144. https://doi.org/10.1038/sj.bjc.6605612
- Park, J., J. Lee, W. Kang, S. Chang, E. C. Shin, and C. Choi. 2013. TGF-beta1 and hypoxia-dependent expression of MKP-1 leads tumor resistance to death receptor-mediated cell death. Cell Death. Dis. 4: e521.
- Wang, J., J. Y. Zhou, and G. S. Wu. 2007. ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells. Cancer Res. 67: 11933-11941. https://doi.org/10.1158/0008-5472.CAN-07-5185
- Wang, J., J. Y. Zhou, L. Zhang, and G. S. Wu. 2009. Involvement of MKP-1 and Bcl-2 in acquired cisplatin resistance in ovarian cancer cells. Cell Cycle 8: 3191-3198. https://doi.org/10.4161/cc.8.19.9751
- Small, G. W., Y. Y. Shi, L. S. Higgins, and R. Z. Orlowski. 2007. Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res. 67: 4459-4466. https://doi.org/10.1158/0008-5472.CAN-06-2644
- Ma, G., Y. Pan, C. Zhou, R. Sun, J. Bai, P. Liu, Y. Ren, and J. He. 2015. Mitogen-activated protein kinase phosphatase 1 is involved in tamoxifen resistance in MCF7 cells. Oncol. Rep. 34: 2423-2430. https://doi.org/10.3892/or.2015.4244
- Lee, M., K. S. Young, J. Kim, H. S. Kim, S. M. Kim, and E. J. Kim. 2013. Mitogen-activated protein kinase phosphatase-1 inhibition and sustained extracellular signal-regulated kinase 1/2 activation in camptothecin-induced human colon cancer cell death. Cancer Biol. Ther. 14: 1007-1015. https://doi.org/10.4161/cbt.26044
- Lawan, A., S. Al-Harthi, L. Cadalbert, A. G. McCluskey, M. Shweash, G. Grassia, A. Grant, M. Boyd, S. Currie, and R. Plevin. 2011. Deletion of the dual specific phosphatase-4 (DUSP-4) gene reveals an essential non-redundant role for MAP kinase phosphatase-2 (MKP-2) in proliferation and cell survival. J. Biol. Chem. 286: 12933-12943. https://doi.org/10.1074/jbc.M110.181370
- Hasegawa, T., A. Enomoto, T. Kato, K. Kawai, R. Miyamoto, M. Jijiwa, M. Ichihara, M. Ishida, N. Asai, Y. Murakumo, K. Ohara, Y. Niwa, H. Goto, and M. Takahashi. 2008. Roles of induced expression of MAPK phosphatase-2 in tumor development in RET-MEN2A transgenic mice. Oncogene 27: 5684-5695. https://doi.org/10.1038/onc.2008.182
- Groschl, B., M. Bettstetter, C. Giedl, M. Woenckhaus, T. Edmonston, F. Hofstadter, and W. Dietmaier. 2013. Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation. Int. J. Cancer 132: 1537-1546. https://doi.org/10.1002/ijc.27834
- Cagnol, S., and N. Rivard. 2013. Oncogenic KRAS and BRAF activation of the MEK/ERK signaling pathway promotes expression of dual-specificity phosphatase 4 (DUSP4/MKP2) resulting in nuclear ERK1/2 inhibition. Oncogene 32: 564-576. https://doi.org/10.1038/onc.2012.88
- Balko, J. M., R. S. Cook, D. B. Vaught, M. G. Kuba, T. W. Miller, N. E. Bhola, M. E. Sanders, N. M. Granja-Ingram, J. J. Smith, I. M. Meszoely, J. Salter, M. Dowsett, K. Stemke-Hale, A. M. Gonzalez-Angulo, G. B. Mills, J. A. Pinto, H. L. Gomez, and C. L. Arteaga. 2012. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat. Med. 18: 1052-1059. https://doi.org/10.1038/nm.2795
- Venter, D. J., S. J. Ramus, F. M. Hammet, S. M. de, A. M. Hutchins, V. Petrovic, G. Price, and J. E. Armes. 2005. Complex CGH alterations on chromosome arm 8p at candidate tumor suppressor gene loci in breast cancer cell lines. Cancer Genet. Cytogenet. 160: 134-140. https://doi.org/10.1016/j.cancergencyto.2004.12.007
- Haagenson, K. K., J. W. Zhang, Z. Xu, M. P. Shekhar, and G. S. Wu. 2014. Functional analysis of MKP-1 and MKP-2 in breast cancer tamoxifen sensitivity. Oncotarget 5: 1101-1110. https://doi.org/10.18632/oncotarget.1795
- Cadalbert, L., C. M. Sloss, P. Cameron, and R. Plevin. 2005. Conditional expression of MAP kinase phosphatase-2 protects against genotoxic stress-induced apoptosis by binding and selective dephosphorylation of nuclear activated c-jun N-terminal kinase. Cell. Signal. 17: 1254-1264. https://doi.org/10.1016/j.cellsig.2005.01.003
- Muda, M., U. Boschert, R. Dickinson, J. C. Martinou, I. Martinou, M. Camps, W. Schlegel, and S. Arkinstall. 1996. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J. Biol. Chem. 271: 4319-4326. https://doi.org/10.1074/jbc.271.8.4319
- Bloethner, S., B. Chen, K. Hemminki, J. Muller-Berghaus, S. Ugurel, D. Schadendorf, and R. Kumar. 2005. Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 26: 1224-1232. https://doi.org/10.1093/carcin/bgi066
- Croonquist, P. A., M. A. Linden, F. Zhao, and B. G. Van Ness. 2003. Gene profiling of a myeloma cell line reveals similarities and unique signatures among IL-6 response, N-ras-activating mutations, and coculture with bone marrow stromal cells. Blood 102: 2581-2592. https://doi.org/10.1182/blood-2003-04-1227
- Warmka, J. K., L. J. Mauro, and E. V. Wattenberg. 2004. Mitogen-activated protein kinase phosphatase-3 is a tumor promoter target in initiated cells that express oncogenic Ras. J. Biol. Chem. 279: 33085-33092. https://doi.org/10.1074/jbc.M403120200
- Zhang, Z., S. Kobayashi, A. C. Borczuk, R. S. Leidner, T. Laframboise, A. D. Levine, and B. Halmos. 2010. Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK signaling in lung cancer cells. Carcinogenesis 31: 577-586. https://doi.org/10.1093/carcin/bgq020
- Ma, J., X. Yu, L. Guo, and S. H. Lu. 2013. DUSP6, a tumor suppressor, is involved in differentiation and apoptosis in esophageal squamous cell carcinoma. Oncol. Lett. 6: 1624-1630. https://doi.org/10.3892/ol.2013.1605
- Bergholz, J., Y. Zhang, J. Wu, L. Meng, E. M. Walsh, A. Rai, M. Y. Sherman, and Z. X. Xiao. 2014. DeltaNp63alpha regulates Erk signaling via MKP3 to inhibit cancer metastasis. Oncogene 33: 212-224. https://doi.org/10.1038/onc.2012.564
- Luo, M. L., C. Gong, C. H. Chen, H. Hu, P. Huang, M. Zheng, Y. Yao, S. Wei, G. Wulf, J. Lieberman, X. Z. Zhou, E. Song, and K. P. Lu. 2015. The Rab2A GTPase promotes breast cancer stem cells and tumorigenesis via Erk signaling activation. Cell Rep. 11: 111-124. https://doi.org/10.1016/j.celrep.2015.03.002
- Li, W., and D. W. Melton. 2012. Cisplatin regulates the MAPK kinase pathway to induce increased expression of DNA repair gene ERCC1 and increase melanoma chemoresistance. Oncogene 31: 2412-2422. https://doi.org/10.1038/onc.2011.426
- Messina, S., L. Frati, C. Leonetti, C. Zuchegna, Z. E. Di, A. Calogero, and A. Porcellini. 2011. Dual-specificity phosphatase DUSP6 has tumor-promoting properties in human glioblastomas. Oncogene 30: 3813-3820. https://doi.org/10.1038/onc.2011.99
- Choi, B. K., C. H. Choi, H. L. Oh, and Y. K. Kim. 2004. Role of ERK activation in cisplatin-induced apoptosis in A172 human glioma cells. Neurotoxicology 25: 915-924. https://doi.org/10.1016/j.neuro.2004.06.002
- Tanoue, T., T. Moriguchi, and E. Nishida. 1999. Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. J. Biol. Chem. 274: 19949-19956. https://doi.org/10.1074/jbc.274.28.19949
- Theodosiou, A., A. Smith, C. Gillieron, S. Arkinstall, and A. Ashworth. 1999. MKP5, a new member of the MAP kinase phosphatase family, which selectively dephosphorylates stress-activated kinases. Oncogene 18: 6981-6988. https://doi.org/10.1038/sj.onc.1203185
- James, S. J., H. Jiao, H. Y. Teh, H. Takahashi, C. W. Png, M. C. Phoon, Y. Suzuki, T. Sawasaki, H. Xiao, V. T. Chow, N. Yamamoto, J. M. Reynolds, R. A. Flavell, C. Dong, and Y. Zhang. 2015. MAPK Phosphatase 5 Expression Induced by Influenza and Other RNA Virus Infection Negatively Regulates IRF3 Activation and Type I Interferon Response. Cell Rep. 10: 1722-1734. https://doi.org/10.1016/j.celrep.2015.02.030
- Zhang, Y., J. N. Blattman, N. J. Kennedy, J. Duong, T. Nguyen, Y. Wang, R. J. Davis, P. D. Greenberg, R. A. Flavell, and C. Dong. 2004. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 430: 793-797. https://doi.org/10.1038/nature02764
- Qian, F., J. Deng, N. Cheng, E. J. Welch, Y. Zhang, A. B. Malik, R. A. Flavell, C. Dong, and R. D. Ye. 2009. A non-redundant role for MKP5 in limiting ROS production and preventing LPS-induced vascular injury. EMBO J. 28: 2896-2907. https://doi.org/10.1038/emboj.2009.234
- Zhang, Y., T. Nguyen, P. Tang, N. J. Kennedy, H. Jiao, M. Zhang, J. M. Reynolds, A. Jaeschke, N. Martin-Orozco, Y. Chung, W. M. He, C. Wang, W. Jia, B. Ge, R. J. Davis, R. A. Flavell, and C. Dong. 2015. Regulation of Adipose Tissue Inflammation and Insulin Resistance by MAPK Phosphatase 5. J. Biol. Chem. 290: 14875-14883. https://doi.org/10.1074/jbc.M115.660969
- Png, C. W., M. Weerasooriya, J. Guo, S. J. James, H. M. Poh, M. Osato, R. A. Flavell, C. Dong, H. Yang, and Y. Zhang. 2016. DUSP10 regulates intestinal epithelial cell growth and colorectal tumorigenesis. Oncogene 35: 206-217. https://doi.org/10.1038/onc.2015.74
- Song, M. K., Y. K. Park, and J. C. Ryu. 2013. Polycyclic aromatic hydrocarbon (PAH)-mediated upregulation of hepatic microRNA-181 family promotes cancer cell migration by targeting MAPK phosphatase-5, regulating the activation of p38 MAPK. Toxicol. Appl. Pharmacol. 273: 130-139. https://doi.org/10.1016/j.taap.2013.08.016
- He, G., L. Zhang, Q. Li, and L. Yang. 2014. miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomed. Pharmacother. 68: 25-30. https://doi.org/10.1016/j.biopha.2013.11.004
- Tanoue, T., T. Yamamoto, R. Maeda, and E. Nishida. 2001. A Novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38 alpha and beta MAPKs. J. Biol. Chem. 276: 26629-26639. https://doi.org/10.1074/jbc.M101981200
- Masuda, K., H. Shima, M. Watanabe, and K. Kikuchi. 2001. MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein. J. Biol. Chem. 276: 39002-39011. https://doi.org/10.1074/jbc.M104600200
- Zhang, Y., K. C. Nallaparaju, X. Liu, H. Jiao, J. M. Reynolds, Z. X. Wang, and C. Dong. 2015. MAPK phosphatase 7 regulates T cell differentiation via inhibiting ERK-mediated IL-2 expression. J. Immunol. 194: 3088-3095. https://doi.org/10.4049/jimmunol.1402638
- Wei, X., W. Guo, S. Wu, L. Wang, P. Huang, J. Liu, and B. Fang. 2010. Oxidative stress in NSC-741909-induced apoptosis of cancer cells. J. Transl. Med. 8: 37.
- Vogt, A., A. Tamewitz, J. Skoko, R. P. Sikorski, K. A. Giuliano, and J. S. Lazo. 2005. The benzo[c]phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activated protein kinase phosphatase-1. J. Biol. Chem. 280: 19078-19086. https://doi.org/10.1074/jbc.M501467200
- Wang, Z., J. Y. Zhou, D. Kanakapalli, S. Buck, G. S. Wu, and Y. Ravindranath. 2008. High level of mitogen-activated protein kinase phosphatase-1 expression is associated with cisplatin resistance in osteosarcoma. Pediatr. Blood Cancer 51: 754-759. https://doi.org/10.1002/pbc.21727
- Arnold, D. M., C. Foster, D. M. Huryn, J. S. Lazo, P. A. Johnston, and P. Wipf. 2007. Synthesis and biological activity of a focused library of mitogen-activated protein kinase phosphatase inhibitors. Chem. Biol. Drug Des. 69: 23-30. https://doi.org/10.1111/j.1747-0285.2007.00474.x
- Lazo, J. S., J. J. Skoko, S. Werner, B. Mitasev, A. Bakan, F. Koizumi, A. Yellow-Duke, I. Bahar, and K. M. Brummond. 2007. Structurally unique inhibitors of human mitogen-activated protein kinase phosphatase-1 identified in a pyrrole carboxamide library. J. Pharmacol. Exp. Ther. 322: 940-947. https://doi.org/10.1124/jpet.107.122242
- Vogt, A., P. R. McDonald, A. Tamewitz, R. P. Sikorski, P. Wipf, J. J. Skoko, III, and J. S. Lazo. 2008. A cell-active inhibitor of mitogen-activated protein kinase phosphatases restores paclitaxel-induced apoptosis in dexamethasone-protected cancer cells. Mol. Cancer Ther. 7: 330-340. https://doi.org/10.1158/1535-7163.MCT-07-2165