DOI QR코드

DOI QR Code

Generation of Tolerogenic Dendritic Cells and Their Therapeutic Applications

  • Seungbo Yoo (System Immunology Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University) ;
  • Sang-Jun Ha (System Immunology Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University)
  • Received : 2015.12.22
  • Accepted : 2016.02.07
  • Published : 2016.02.29

Abstract

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that bridge innate and adaptive immune responses, thereby leading to immune activation. DCs have been known to recognize pathogen-associated molecular patterns such as lipopolysaccharides (LPS) and nucleic acids via their pattern recognition receptors, which trigger signaling of their maturation and effector functions. Furthermore, DCs take up and process antigens as a form of peptide loaded on the major histocompatibility complex (MHC) and present them to T cells, which are responsible for the adaptive immune response. Conversely, DCs can also play a role in inducing immune suppression under specific circumstances. From this perspective, the role of DCs is related to tolerance rather than immunity. Immunologists refer to these special DCs as tolerogenic DCs (tolDCs). However, the definition of tolDCs is controversial, and there is limited information on their development and characteristics. In this review, we discuss the current concept of tolDCs, cutting-edge methods for generating tolDCs in vitro, and future applications of tolDCs, including clinical use.

Keywords

Acknowledgement

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation of Korea (NRF) grant funded by the Korean government, MSIP (2012M3A9B4028264 and 2015R1A2A1A10056084).

References

  1. Freeman, G. J., A. J. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L. J. Fitz, N. Malenkovich, T. Okazaki, M. C. Byrne, H. F. Horton, L. Fouser, L. Carter, V. Ling, M. R. Bowman, B. M. Carreno, M. Collins, C. R. Wood, and T. Honjo. 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192: 1027-1034.  https://doi.org/10.1084/jem.192.7.1027
  2. Latchman, Y., C. R. Wood, T. Chernova, D. Chaudhary, M. Borde, I. Chernova, Y. Iwai, A. J. Long, J. A. Brown, R. Nunes, E. A. Greenfield, K. Bourque, V. A. Boussiotis, L. L. Carter, B. M. Carreno, N. Malenkovich, H. Nishimura, T. Okazaki, T. Honjo, A. H. Sharpe, and G. J. Freeman. 2001. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2: 261-268.  https://doi.org/10.1038/85330
  3. Martin-Orozco, N., Y. H. Wang, H. Yagita, and C. Dong. 2006. Cutting Edge: Programmed death (PD) ligand-1/PD-1 interaction is required for CD8 T cell tolerance to tissue antigens. J. Immunol. 177: 8291-8295.  https://doi.org/10.4049/jimmunol.177.12.8291
  4. Kuipers, H., F. Muskens, M. Willart, D. Hijdra, F. B. van Assema, A. J. Coyle, H. C. Hoogsteden, and B. N. Lambrecht. 2006. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4 T cell activation. Eur. J. Immunol. 36: 2472-2482.  https://doi.org/10.1002/eji.200635978
  5. Brown, J. A., D. M. Dorfman, F. R. Ma, E. L. Sullivan, O. Munoz, C. R. Wood, E. A. Greenfield, and G. J. Freeman. 2003. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 170: 1257-1266.  https://doi.org/10.4049/jimmunol.170.3.1257
  6. Chen, C., Q. X. Qu, J. A. Huang, Y. B. Zhu, Y. Ge, Q. Wang, and X. G. Zhang. 2007. Expression of programmed-death receptor ligands 1 and 2 may contribute to the poor stimulatory potential of murine immature dendritic cells. Immunobiology 212: 159-165.  https://doi.org/10.1016/j.imbio.2007.01.004
  7. Chen, L., Z. Zhang, W. Chen, Z. Zhang, Y. Li, M. Shi, J. Zhang, L. Chen, S. Wang, and F. S. Wang. 2007. B7-H1 up-regulation on myeloid dendritic cells significantly suppresses T cell immune function in patients with chronic hepatitis B. J. Immunol. 178: 6634-6641.  https://doi.org/10.4049/jimmunol.178.10.6634
  8. Curiel, T. J., S. Wei, H. Dong, X. Alvarez, P. Cheng, P. Mottram, R. Krzysiek, K. L. Knutson, B. Daniel, M. C. Zimmermann, O. David, M. Burow, A. Gordon, N. Dhurandhar, L. Myers, R. Berggren, A. Hemminki, R. D. Alvarez, D. Emilie, D. T. Curiel, L. Chen, and W. Zou. 2003. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. 9: 562-567.  https://doi.org/10.1038/nm863
  9. Kim, H. K., H. Guan, G. Zu, H. Li, L. Wu, X. Feng, C. Elmets, Y. Fu, and H. Xu. 2006. High-level expression of B7-H1 molecules by dendritic cells suppresses the function of activated T cells and desensitizes allergen-primed animals. J. Leukoc. Biol. 79: 686-695.  https://doi.org/10.1189/jlb.0805436
  10. Latchman, Y. E., S. C. Liang, Y. Wu, T. Chernova, R. A. Sobel, M. Klemm, V. K. Kuchroo, G. J. Freeman, and A. H. Sharpe. 2004. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl. Acad. Sci. U. S. A. 101: 10691-10696.  https://doi.org/10.1073/pnas.0307252101
  11. Selenko-Gebauer, N., O. Majdic, A. Szekeres, G. Hofler, E. Guthann, U. Korthauer, G. Zlabinger, P. Steinberger, W. F. Pickl, H. Stockinger, W. Knapp, and J. Stockl. 2003. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J. Immunol. 170: 3637-3644.  https://doi.org/10.4049/jimmunol.170.7.3637
  12. Tokita, D., G. V. Mazariegos, A. F. Zahorchak, N. Chien, M. Abe, G. Raimondi, and A. W. Thomson. 2008. High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. Transplantation 85: 369-377.  https://doi.org/10.1097/TP.0b013e3181612ded
  13. Waisman, A., and N. Yogev. 2009. B7-H1 and CD8 Treg: the enigmatic role of B7-H1 in peripheral tolerance. Eur. J. Immunol. 39: 1448-1451.  https://doi.org/10.1002/eji.200939541
  14. King, L. B., and J. D. Ashwell. 1993. Signaling for death of lymphoid cells. Curr. Opin. Immunol. 5: 368-373.  https://doi.org/10.1016/0952-7915(93)90055-W
  15. Klas, C., K. M. Debatin, R. R. Jonker, and P. H. Krammer. 1993. Activation interferes with the APO-1 pathway in mature human T cells. Int. Immunol. 5: 625-630.  https://doi.org/10.1093/intimm/5.6.625
  16. Brunda, M. J. 1994. Interleukin-12. J. Leukoc. Biol. 55: 280-288.  https://doi.org/10.1002/jlb.55.2.280
  17. Zlotnik, A., and K. W. Moore. 1991. Interleukin 10. Cytokine 3: 366-371.  https://doi.org/10.1016/1043-4666(91)90039-G
  18. Spits, H., and M. R. de Waal. 1992. Functional characterization of human IL-10. Int. Arch. Allergy Immunol. 99: 8-15.  https://doi.org/10.1159/000236329
  19. Taga, K., and G. Tosato. 1992. IL-10 inhibits human T cell proliferation and IL-2 production. J. Immunol. 148: 1143-1148.  https://doi.org/10.4049/jimmunol.148.4.1143
  20. Rennick, D., D. Berg, and G. Holland. 1992. Interleukin 10: an overview. Prog. Growth Factor Res. 4: 207-227.  https://doi.org/10.1016/0955-2235(92)90020-I
  21. de Waal, M. R., J. Haanen, H. Spits, M. G. Roncarolo, V. A. te, C. Figdor, K. Johnson, R. Kastelein, H. Yssel, and J. E. de Vries. 1991. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J. Exp. Med. 174: 915-924.  https://doi.org/10.1084/jem.174.4.915
  22. Sanjabi, S., L. A. Zenewicz, M. Kamanaka, and R. A. Flavell. 2009. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr. Opin. Pharmacol. 9: 447-453.  https://doi.org/10.1016/j.coph.2009.04.008
  23. Grohmann, U., M. L. Belladonna, R. Bianchi, C. Orabona, E. Ayroldi, M. C. Fioretti, and P. Puccetti. 1998. IL-12 acts directly on DC to promote nuclear localization of NF-kappaB and primes DC for IL-12 production. Immunity 9: 315-323.  https://doi.org/10.1016/S1074-7613(00)80614-7
  24. Xie, F. T., J. S. Cao, J. Zhao, Y. Yu, F. Qi, and X. C. Dai. 2015. IDO expressing dendritic cells suppress allograft rejection of small bowel transplantation in mice by expansion of Foxp3 regulatory T cells. Transpl. Immunol. 33: 69-77.  https://doi.org/10.1016/j.trim.2015.05.003
  25. Hwu, P., M. X. Du, R. Lapointe, M. Do, M. W. Taylor, and H. A. Young. 2000. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J. Immunol. 164: 3596-3599.  https://doi.org/10.4049/jimmunol.164.7.3596
  26. Frumento, G., R. Rotondo, M. Tonetti, G. Damonte, U. Benatti, and G. B. Ferrara. 2002. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196: 459-468.  https://doi.org/10.1084/jem.20020121
  27. Munn, D. H., M. D. Sharma, J. R. Lee, K. G. Jhaver, T. S. Johnson, D. B. Keskin, B. Marshall, P. Chandler, S. J. Antonia, R. Burgess, C. L. Slingluff, Jr., and A. L. Mellor. 2002. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297: 1867-1870.  https://doi.org/10.1126/science.1073514
  28. Terness, P., T. M. Bauer, L. Rose, C. Dufter, A. Watzlik, H. Simon, and G. Opelz. 2002. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J. Exp. Med. 196: 447-457.  https://doi.org/10.1084/jem.20020052
  29. van der Marel, A. P., J. N. Samsom, M. Greuter, L. A. van Berkel, T. O'Toole, G. Kraal, and R. E. Mebius. 2007. Blockade of IDO inhibits nasal tolerance induction. J. Immunol. 179: 894-900.  https://doi.org/10.4049/jimmunol.179.2.894
  30. Inaba, K., M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, and R. M. Steinman. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176: 1693-1702.  https://doi.org/10.1084/jem.176.6.1693
  31. Inaba, K., M. Inaba, M. Deguchi, K. Hagi, R. Yasumizu, S. Ikehara, S. Muramatsu, and R. M. Steinman. 1993. Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc. Natl. Acad. Sci. U. S. A. 90: 3038-3042.  https://doi.org/10.1073/pnas.90.7.3038
  32. Witmer-Pack, M. D., W. Olivier, J. Valinsky, G. Schuler, and R. M. Steinman. 1987. Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells. J. Exp. Med. 166: 1484-1498.  https://doi.org/10.1084/jem.166.5.1484
  33. Caux, C., C. zutter-Dambuyant, D. Schmitt, and J. Banchereau. 1992. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360: 258-261.  https://doi.org/10.1038/360258a0
  34. Santiago-Schwarz, F., E. Belilos, B. Diamond, and S. E. Carsons. 1992. TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. J. Leukoc. Biol. 52: 274-281.  https://doi.org/10.1002/jlb.52.3.274
  35. Caux, C., B. Vanbervliet, C. Massacrier, C. zutter-Dambuyant, B. de Saint-Vis, C. Jacquet, K. Yoneda, S. Imamura, D. Schmitt, and J. Banchereau. 1996. CD34 hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J. Exp. Med. 184: 695-706.  https://doi.org/10.1084/jem.184.2.695
  36. Rosenzwajg, M., B. Canque, and J. C. Gluckman. 1996. Human dendritic cell differentiation pathway from CD34+ hematopoietic precursor cells. Blood 87: 535-544.  https://doi.org/10.1182/blood.V87.2.535.bloodjournal872535
  37. Reid, C. D., A. Stackpoole, A. Meager, and J. Tikerpae. 1992. Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34 progenitors in human bone marrow. J. Immunol. 149: 2681-2688.  https://doi.org/10.4049/jimmunol.149.8.2681
  38. Szabolcs, P., M. A. Moore, and J. W. Young. 1995. Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34 bone marrow precursors cultured with c-kit ligand, granulocyte-macrophage colony-stimulating factor, and TNF-alpha. J. Immunol. 154: 5851-5861.  https://doi.org/10.4049/jimmunol.154.11.5851
  39. Torres-Aguilar, H., M. Blank, L. J. Jara, and Y. Shoenfeld. 2010. Tolerogenic dendritic cells in autoimmune diseases: crucial players in induction and prevention of autoimmunity. Autoimmun. Rev. 10: 8-17.  https://doi.org/10.1016/j.autrev.2010.07.015
  40. Boks, M. A., J. R. Kager-Groenland, M. S. Haasjes, J. J. Zwaginga, S. M. van Ham, and B. A. ten. 2012. IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction--a comparative study of human clinical-applicable DC. Clin. Immunol. 142: 332-342.  https://doi.org/10.1016/j.clim.2011.11.011
  41. Haase, C., T. N. Jorgensen, and B. K. Michelsen. 2002. Both exogenous and endogenous interleukin-10 affects the maturation of bone-marrow-derived dendritic cells in vitro and strongly influences T-cell priming in vivo. Immunology 107: 489-499.  https://doi.org/10.1046/j.1365-2567.2002.01529.x
  42. Muller, G., A. Muller, T. Tuting, K. Steinbrink, J. Saloga, C. Szalma, J. Knop, and A. H. Enk. 2002. Interleukin-10-treated dendritic cells modulate immune responses of naive and sensitized T cells in vivo. J. Invest. Dermatol. 119: 836-841.  https://doi.org/10.1046/j.1523-1747.2002.00496.x
  43. De, S. T., M. M. Van, B. G. De, J. Urbain, O. Leo, and M. Moser. 1997. Effect of interleukin-10 on dendritic cell maturation and function. Eur. J. Immunol. 27: 1229-1235.  https://doi.org/10.1002/eji.1830270526
  44. Eljaafari, A., Y. P. Li, and P. Miossec. 2009. IFN-gamma, as secreted during an alloresponse, induces differentiation of monocytes into tolerogenic dendritic cells, resulting in FoxP3 regulatory T cell promotion. J. Immunol. 183: 2932-2945.  https://doi.org/10.4049/jimmunol.0804352
  45. Svajger, U., N. Obermajer, and M. Jeras. 2014. IFN-gamma-rich environment programs dendritic cells toward silencing of cytotoxic immune responses. J. Leukoc. Biol. 95: 33-46.  https://doi.org/10.1189/jlb.1112589
  46. Della, B. S., and D. Mavilio. 2014. IFN-gamma: a Janus-faced cytokine in dendritic cell programming. J. Leukoc. Biol. 95: 6-8.  https://doi.org/10.1189/jlb.0713369
  47. Kerkar, S. P., D. Chinnasamy, N. Hadi, J. Melenhorst, P. Muranski, A. Spyridonidis, S. Ito, G. Weber, F. Yin, N. Hensel, E. Wang, F. M. Marincola, and A. J. Barrett. 2014. Timing and intensity of exposure to interferon-gamma critically determines the function of monocyte-derived dendritic cells. Immunology 143: 96-108.  https://doi.org/10.1111/imm.12292
  48. Delneste, Y., P. Charbonnier, N. Herbault, G. Magistrelli, G. Caron, J. Y. Bonnefoy, and P. Jeannin. 2003. Interferon-gamma switches monocyte differentiation from dendritic cells to macrophages. Blood 101: 143-150.  https://doi.org/10.1182/blood-2002-04-1164
  49. Thomas, D. C., F. S. Wong, P. Zaccone, E. A. Green, and M. Wallberg. 2013. Protection of islet grafts through transforming growth factor-beta-induced tolerogenic dendritic cells. Diabetes 62: 3132-3142.  https://doi.org/10.2337/db12-1740
  50. O'Flynn, L., O. Treacy, A. E. Ryan, M. Morcos, M. Cregg, J. Gerlach, L. Joshi, M. Nosov, and T. Ritter. 2013. Donor bone marrow-derived dendritic cells prolong corneal allograft survival and promote an intragraft immunoregulatory milieu. Mol. Ther. 21: 2102-2112.  https://doi.org/10.1038/mt.2013.167
  51. Anderson, A. E., B. L. Sayers, M. A. Haniffa, D. J. Swan, J. Diboll, X. N. Wang, J. D. Isaacs, and C. M. Hilkens. 2008. Differential regulation of naive and memory CD4 T cells by alternatively activated dendritic cells. J. Leukoc. Biol. 84: 124-133.  https://doi.org/10.1189/jlb.1107744
  52. Anderson, A. E., D. J. Swan, B. L. Sayers, R. A. Harry, A. M. Patterson, D. A. von, J. H. Robinson, J. D. Isaacs, and C. M. Hilkens. 2009. LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells. J. Leukoc. Biol. 85: 243-250.  https://doi.org/10.1189/jlb.0608374
  53. Harry, R. A., A. E. Anderson, J. D. Isaacs, and C. M. Hilkens. 2010. Generation and characterisation of therapeutic tolerogenic dendritic cells for rheumatoid arthritis. Ann. Rheum. Dis. 69: 2042-2050.  https://doi.org/10.1136/ard.2009.126383
  54. Bosma, B. M., H. J. Metselaar, N. M. Nagtzaam, H. R. de, S. Mancham, L. J. van der Laan, E. J. Kuipers, and J. Kwekkeboom. 2008. Dexamethasone transforms lipopolysaccharide-stimulated human blood myeloid dendritic cells into myeloid dendritic cells that prime interleukin-10 production in T cells. Immunology 125: 91-100.  https://doi.org/10.1111/j.1365-2567.2008.02824.x
  55. Ferreira, G. B., E. E. van, A. Verstuyf, M. Waer, L. Overbergh, C. Gysemans, and C. Mathieu. 2011. 1,25-Dihydroxyvitamin D3 alters murine dendritic cell behaviour in vitro and in vivo. Diabetes Metab. Res. Rev. 27: 933-941.  https://doi.org/10.1002/dmrr.1275
  56. Matsuzaki, J., T. Tsuji, Y. Zhang, D. Wakita, I. Imazeki, T. Sakai, H. Ikeda, and T. Nishimura. 2006. 1alpha,25-Dihydroxyvitamin D3 downmodulates the functional differentiation of Th1 cytokine-conditioned bone marrow-derived dendritic cells beneficial for cytotoxic T lymphocyte generation. Cancer Sci. 97: 139-147.  https://doi.org/10.1111/j.1349-7006.2006.00144.x
  57. Farias, A. S., G. S. Spagnol, P. Bordeaux-Rego, C. O. Oliveira, A. G. Fontana, R. F. de Paula, M. P. Santos, F. Pradella, A. S. Moraes, E. C. Oliveira, A. L. Longhini, A. C. Rezende, M. W. Vaisberg, and L. M. Santos. 2013. Vitamin D3 induces IDO tolerogenic DCs and enhances Treg, reducing the severity of EAE. CNS Neurosci. Ther. 19: 269-277.  https://doi.org/10.1111/cns.12071
  58. Nikolic, T., and B. O. Roep. 2013. Regulatory multitasking of tolerogenic dendritic cells - lessons taken from vitamin d3-treated tolerogenic dendritic cells. Front. Immunol. 4: 113. 
  59. Volchenkov, R., J. G. Brun, R. Jonsson, and S. Appel. 2013. In vitro suppression of immune responses using monocyte-derived tolerogenic dendritic cells from patients with primary Sjogren's syndrome. Arthritis Res. Ther. 15: R114. 
  60. Jiang, X. X., Y. Zhang, B. Liu, S. X. Zhang, Y. Wu, X. D. Yu, and N. Mao. 2005. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105: 4120-4126.  https://doi.org/10.1182/blood-2004-02-0586
  61. Beyth, S., Z. Borovsky, D. Mevorach, M. Liebergall, Z. Gazit, H. Aslan, E. Galun, and J. Rachmilewitz. 2005. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105: 2214-2219.  https://doi.org/10.1182/blood-2004-07-2921
  62. Ge, W., J. Jiang, M. L. Baroja, J. Arp, R. Zassoko, W. Liu, A. Bartholomew, B. Garcia, and H. Wang. 2009. Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. Am. J. Transplant. 9: 1760-1772.  https://doi.org/10.1111/j.1600-6143.2009.02721.x
  63. Wang, H., F. Qi, X. Dai, W. Tian, T. Liu, H. Han, B. Zhang, H. Li, Z. Zhang, and C. Du. 2014. Requirement of B7-H1 in mesenchymal stem cells for immune tolerance to cardiac allografts in combination therapy with rapamycin. Transpl. Immunol. 31: 65-74.  https://doi.org/10.1016/j.trim.2014.06.005
  64. Guyot, P., P. Taylor, R. Christensen, L. Pericleous, C. Poncet, M. Lebmeier, P. Drost, and G. Bergman. 2011. Abatacept with methotrexate versus other biologic agents in treatment of patients with active rheumatoid arthritis despite methotrexate: a network meta-analysis. Arthritis Res. Ther. 13: R204. 
  65. Hilkens, C. M., and J. D. Isaacs. 2013. Tolerogenic dendritic cell therapy for rheumatoid arthritis: where are we now? Clin. Exp. Immunol. 172: 148-157.  https://doi.org/10.1111/cei.12038
  66. Bianco, N. R., S. H. Kim, M. A. Ruffner, and P. D. Robbins. 2009. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum. 60: 380-389.  https://doi.org/10.1002/art.24229
  67. Chorny, A., E. Gonzalez-Rey, A. Fernandez-Martin, D. Pozo, D. Ganea, and M. Delgado. 2005. Vasoactive intestinal peptide induces regulatory dendritic cells with therapeutic effects on autoimmune disorders. Proc. Natl. Acad. Sci. U. S. A. 102: 13562-13567.  https://doi.org/10.1073/pnas.0504484102
  68. Healy, L. J., H. L. Collins, and S. J. Thompson. 2008. Systemic administration of tolerogenic dendritic cells ameliorates murine inflammatory arthritis. Open Rheumatol. J. 2: 71-80.  https://doi.org/10.2174/1874312900802010071
  69. Jaen, O., S. Rulle, N. Bessis, A. Zago, M. C. Boissier, and G. Falgarone. 2009. Dendritic cells modulated by innate immunity improve collagen-induced arthritis and induce regulatory T cells in vivo. Immunology 126: 35-44.  https://doi.org/10.1111/j.1365-2567.2008.02875.x
  70. Kim, S. H., S. Kim, C. H. Evans, S. C. Ghivizzani, T. Oligino, and P. D. Robbins. 2001. Effective treatment of established murine collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express IL-4. J. Immunol. 166: 3499-3505.  https://doi.org/10.4049/jimmunol.166.5.3499
  71. Morita, Y., J. Yang, R. Gupta, K. Shimizu, E. A. Shelden, J. Endres, J. J. Mule, K. T. McDonagh, and D. A. Fox. 2001. Dendritic cells genetically engineered to express IL-4 inhibit murine collagen-induced arthritis. J. Clin. Invest 107: 1275-1284.  https://doi.org/10.1172/JCI11490
  72. Ning, B., J. Wei, A. Zhang, W. Gong, J. Fu, T. Jia, and S. Y. Yang. 2015. Antigen-specific tolerogenic dendritic cells ameliorate the severity of murine collagen-induced arthritis. PLoS One 10: e0131152. 
  73. Popov, I., M. Li, X. Zheng, H. San, X. Zhang, T. E. Ichim, M. Suzuki, B. Feng, C. Vladau, R. Zhong, B. Garcia, G. Strejan, R. D. Inman, and W. P. Min. 2006. Preventing autoimmune arthritis using antigen-specific immature dendritic cells: a novel tolerogenic vaccine. Arthritis Res. Ther. 8: R141. 
  74. Salazar, L., O. Aravena, P. Abello, A. Escobar, J. Contreras-Levicoy, N. Rojas-Colonelli, D. Catalan, A. Aguirre, R. Zuniga, B. Pesce, C. Gonzalez, R. Cepeda, M. Cuchacovich, M. C. Molina, F. Salazar-Onfray, M. Delgado, R. E. Toes, and J. C. Aguillon. 2008. Modulation of established murine collagen-induced arthritis by a single inoculation of short-term lipopolysaccharide-stimulated dendritic cells. Ann. Rheum. Dis. 67: 1235-1241.  https://doi.org/10.1136/ard.2007.072199
  75. Steinbrink, K., M. Wolfl, H. Jonuleit, J. Knop, and A. H. Enk. 1997. Induction of tolerance by IL-10-treated dendritic cells. J. Immunol. 159: 4772-4780.  https://doi.org/10.4049/jimmunol.159.10.4772
  76. van Duivenvoorde, L. M., W. G. Han, A. M. Bakker, P. Louis-Plence, L. M. Charbonnier, F. Apparailly, d. van, V, C. Jorgensen, T. W. Huizinga, and R. E. Toes. 2007. Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms. J. Immunol. 179: 1506-1515.  https://doi.org/10.4049/jimmunol.179.3.1506
  77. van Duivenvoorde, L. M., P. Louis-Plence, F. Apparailly, d. van, V, T. W. Huizinga, C. Jorgensen, and R. E. Toes. 2004. Antigen-specific immunomodulation of collagen-induced arthritis with tumor necrosis factor-stimulated dendritic cells. Arthritis Rheum. 50: 3354-3364.  https://doi.org/10.1002/art.20513
  78. Xiao, B. G., W. H. Zhu, and C. Z. Lu. 2007. The presence of GM-CSF and IL-4 interferes with effect of TGF-beta1 on antigen presenting cells in patients with multiple sclerosis and in rats with experimental autoimmune encephalomyelitis. Cell. Immunol. 249: 30-36.  https://doi.org/10.1016/j.cellimm.2007.10.006
  79. Fu, J., A. Zhang, and X. Ju. 2012. Tolerogenic dendritic cells as a target for the therapy of immune thrombocytopenia. Clin. Appl. Thromb. Hemost. 18: 469-475.  https://doi.org/10.1177/1076029612438612
  80. Adorini, L. 2003. Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting autoimmune diabetes. Ann. N. Y. Acad. Sci. 987: 258-261.  https://doi.org/10.1111/j.1749-6632.2003.tb06057.x
  81. Lau, A. W., S. Biester, R. J. Cornall, and J. V. Forrester. 2008. Lipopolysaccharide-activated IL-10-secreting dendritic cells suppress experimental autoimmune uveoretinitis by MHCII-dependent activation of CD62L-expressing regulatory T cells. J. Immunol. 180: 3889-3899.  https://doi.org/10.4049/jimmunol.180.6.3889
  82. Silva, P. M., J. Bier, L. N. Paiatto, A. C. Galdino, S. C. Lopes, L. G. Fernandes, W. M. Tamashiro, and P. U. Simioni. 2015. Tolerogenic Dendritic Cells on Transplantation: Immunotherapy Based on Second Signal Blockage. J. Immunol. Res. 2015: 856707. 
  83. Ezzelarab, M., and A. W. Thomson. 2011. Tolerogenic dendritic cells and their role in transplantation. Semin. Immunol. 23: 252-263.  https://doi.org/10.1016/j.smim.2011.06.007
  84. Li, G. P., J. Yang, J. Hao, Y. M. Yang, Y. N. Ren, R. F. Xie, H. H. Fan, and K. C. Qian. 2012. [The role of third-party tolerogenic dendritic cells in the prevention of acute graft-versus-host-disease following allogeneic bone marrow transplantation in mice]. Zhonghua Xue. Ye. Xue. Za Zhi. 33: 461-466. 
  85. Moreau, A., E. Varey, L. Bouchet-Delbos, and M. C. Cuturi. 2012. Cell therapy using tolerogenic dendritic cells in transplantation. Transplant. Res. 1: 13. 
  86. Cobbold, S. P., and H. Waldmann. 2013. Regulatory cells and transplantation tolerance. Cold Spring Harb. Perspect. Med. 3: pii: a015545. 
  87. Moreau, A., E. Varey, G. Beriou, M. Hill, L. Bouchet-Delbos, M. Segovia, and M. C. Cuturi. 2012. Tolerogenic dendritic cells and negative vaccination in transplantation: from rodents to clinical trials. Front. Immunol. 3: 218. 
  88. Machen, J., J. Harnaha, R. Lakomy, A. Styche, M. Trucco, and N. Giannoukakis. 2004. Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J. Immunol. 173: 4331-4341.  https://doi.org/10.4049/jimmunol.173.7.4331
  89. Stoop, J. N., R. A. Harry, D. A. von, J. D. Isaacs, J. H. Robinson, and C. M. Hilkens. 2010. Therapeutic effect of tolerogenic dendritic cells in established collagen-induced arthritis is associated with a reduction in Th17 responses. Arthritis Rheum. 62: 3656-3665.  https://doi.org/10.1002/art.27756
  90. Morel, P. A., and M. S. Turner. 2011. Dendritic cells and the maintenance of self-tolerance. Immunol. Res. 50: 124-129.  https://doi.org/10.1007/s12026-011-8217-y
  91. Lutz, M. B., and G. Schuler. 2002. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 23: 445-449.  https://doi.org/10.1016/S1471-4906(02)02281-0
  92. Dudek, A. M., S. Martin, A. D. Garg, and P. Agostinis. 2013. Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity. Front. Immunol. 4: 438. 
  93. Voigtlander, C., S. Rossner, E. Cierpka, G. Theiner, C. Wiethe, M. Menges, G. Schuler, and M. B. Lutz. 2006. Dendritic cells matured with TNF can be further activated in vitro and after subcutaneous injection in vivo which converts their tolerogenicity into immunogenicity. J. Immunother. 29: 407-415.  https://doi.org/10.1097/01.cji.0000210081.60178.b4
  94. Lim, D. S., M. S. Kang, J. A. Jeong, and Y. S. Bae. 2009. Semi-mature DC are immunogenic and not tolerogenic when inoculated at a high dose in collagen-induced arthritis mice. Eur. J. Immunol. 39: 1334-1343. https://doi.org/10.1002/eji.200838987