Acknowledgement
This work was supported by the research fund of Hanyang University (HY-2012-N).
References
- Dweck, M. R., N. A. Boon, and D. E. Newby. 2012. Calcific aortic stenosis: a disease of the valve and the myocardium. J. Am. Coll. Cardiol. 60: 1854-1863. https://doi.org/10.1016/j.jacc.2012.02.093
- Towler, D. A. 2013. Molecular and cellular aspects of calcific aortic valve disease. Circ. Res. 113: 198-208. https://doi.org/10.1161/CIRCRESAHA.113.300155
- Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. 2006. Burden of valvular heart diseases: a population-based study. Lancet 368: 1005-1011. https://doi.org/10.1016/S0140-6736(06)69208-8
- Otto, C. M., B. K. Lind, D. W. Kitzman, B. J. Gersh, and D. S. Siscovick. 1999. Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N. Engl. J. Med. 341: 142-147. https://doi.org/10.1056/NEJM199907153410302
- Otto, C. M. 2000. Timing of aortic valve surgery. Heart 84: 211-218. https://doi.org/10.1136/heart.84.2.211
- Moura, L. M., S. F. Ramos, J. L. Zamorano, I. M. Barros, L. F. Azevedo, F. Rocha-Goncalves, and N. M. Rajamannan. 2007. Rosuvastatin affecting aortic valve endothelium to slow the progression of aortic stenosis. J. Am. Coll. Cardiol. 49: 554-561. https://doi.org/10.1016/j.jacc.2006.07.072
- Rosenhek, R., F. Rader, N. Loho, H. Gabriel, M. Heger, U. Klaar, M. Schemper, T. Binder, G. Maurer, and H. Baumgartner. 2004. Statins but not angiotensin-converting enzyme inhibitors delay progression of aortic stenosis. Circulation 110: 1291-1295. https://doi.org/10.1161/01.CIR.0000140723.15274.53
- Cowell, S. J., D. E. Newby, R. J. Prescott, P. Bloomfield, J. Reid, D. B. Northridge, and N. A. Boon. 2005. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N. Engl. J. Med. 352: 2389-2397. https://doi.org/10.1056/NEJMoa043876
- Rossebo, A. B., T. R. Pedersen, K. Boman, P. Brudi, J. B. Chambers, K. Egstrup, E. Gerdts, C. Gohlke-Barwolf, I. Holme, Y. A. Kesaniemi, W. Malbecq, C. A. Nienaber, S. Ray, T. Skjaerpe, K. Wachtell, and R. Willenheimer. 2008. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med. 359: 1343-1356. https://doi.org/10.1056/NEJMoa0804602
- Aikawa, E., and C. M. Otto. 2012. Look more closely at the valve: imaging calcific aortic valve disease. Circulation 125: 9-11. https://doi.org/10.1161/CIRCULATIONAHA.111.073452
- New, S. E., and E. Aikawa. 2011. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res. 108: 1381-1391. https://doi.org/10.1161/CIRCRESAHA.110.234146
- Combs, M. D., and K. E. Yutzey. 2009. Heart valve development: regulatory networks in development and disease. Circ. Res. 105: 408-421. https://doi.org/10.1161/CIRCRESAHA.109.201566
- Wang, H., L. A. Leinwand, and K. S. Anseth. 2014. Cardiac valve cells and their microenvironment--insights from in vitro studies. Nat. Rev. Cardiol. 11: 715-727. https://doi.org/10.1038/nrcardio.2014.162
- Liu, A. C., V. R. Joag, and A. I. Gotlieb. 2007. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171: 1407-1418. https://doi.org/10.2353/ajpath.2007.070251
- Rajamannan, N. M., F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O'Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto. 2011. Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation 124: 1783-1791. https://doi.org/10.1161/CIRCULATIONAHA.110.006767
- Jian, B., N. Narula, Q. Y. Li, E. R. Mohler, III, and R. J. Levy. 2003. Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann. Thorac. Surg. 75: 457-465. https://doi.org/10.1016/S0003-4975(02)04312-6
- Li, C., and A. I. Gotlieb. 2011. Transforming growth factor-beta regulates the growth of valve interstitial cells in vitro. Am. J. Pathol. 179: 1746-1755. https://doi.org/10.1016/j.ajpath.2011.06.007
- Osman, L., M. H. Yacoub, N. Latif, M. Amrani, and A. H. Chester. 2006. Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation 114: I547-I552. https://doi.org/10.1161/CIRCULATIONAHA.105.001115
- Hinz, B. 2007. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127: 526-537. https://doi.org/10.1038/sj.jid.5700613
- Rajamannan, N. M., M. Subramaniam, D. Rickard, S. R. Stock, J. Donovan, M. Springett, T. Orszulak, D. A. Fullerton, A. J. Tajik, R. O. Bonow, and T. Spelsberg. 2003. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107: 2181-2184. https://doi.org/10.1161/01.CIR.0000070591.21548.69
- Yang, X., X. Meng, X. Su, D. C. Mauchley, L. Ao, J. C. Cleveland, Jr., and D. A. Fullerton. 2009. Bone morphogenic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial cells: role of Smad1 and extracellular signal-regulated kinase 1/2. J. Thorac. Cardiovasc. Surg. 138: 1008-1015. https://doi.org/10.1016/j.jtcvs.2009.06.024
- Alexopoulos, A., V. Bravou, S. Peroukides, L. Kaklamanis, J. Varakis, D. Alexopoulos, and H. Papadaki. 2010. Bone regulatory factors NFATc1 and Osterix in human calcific aortic valves. Int. J. Cardiol. 139: 142-149. https://doi.org/10.1016/j.ijcard.2008.10.014
- Filip, D. A., A. Nistor, A. Bulla, A. Radu, F. Lupu, and M. Simionescu. 1987. Cellular events in the development of valvular atherosclerotic lesions induced by experimental hypercholesterolemia. Atherosclerosis 67: 199-214. https://doi.org/10.1016/0021-9150(87)90280-2
- Syvaranta, S., M. anne-Kinnunen, K. Oorni, R. Oksjoki, M. Kupari, P. T. Kovanen, and S. Helske-Suihko. 2014. Potential pathological roles for oxidized low-density lipoprotein and scavenger receptors SR-AI, CD36, and LOX-1 in aortic valve stenosis. Atherosclerosis 235: 398-407. https://doi.org/10.1016/j.atherosclerosis.2014.05.933
- Meng, X., L. Ao, Y. Song, A. Babu, X. Yang, M. Wang, M. J. Weyant, C. A. Dinarello, J. C. Cleveland, Jr., and D. A. Fullerton. 2008. Expression of functional Toll-like receptors 2 and 4 in human aortic valve interstitial cells: potential roles in aortic valve inflammation and stenosis. Am. J. Physiol. Cell Physiol 294: C29-C35. https://doi.org/10.1152/ajpcell.00137.2007
- Yang, X., D. A. Fullerton, X. Su, L. Ao, J. C. Cleveland, Jr., and X. Meng. 2009. Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2. J. Am. Coll. Cardiol. 53: 491-500. https://doi.org/10.1016/j.jacc.2008.09.052
- Bischoff, J., and E. Aikawa. 2011. Progenitor cells confer plasticity to cardiac valve endothelium. J. Cardiovasc. Transl. Res. 4: 710-719. https://doi.org/10.1007/s12265-011-9312-0
- Olsson, M., J. Thyberg, and J. Nilsson. 1999. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler. Thromb. Vasc. Biol. 19: 1218-1222. https://doi.org/10.1161/01.ATV.19.5.1218
- Mohty, D., P. Pibarot, J. P. Despres, C. Cote, B. Arsenault, A. Cartier, P. Cosnay, C. Couture, and P. Mathieu. 2008. Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis. Arterioscler. Thromb. Vasc. Biol. 28: 187-193. https://doi.org/10.1161/ATVBAHA.107.154989
- O'Brien, K. D., D. D. Reichenbach, S. M. Marcovina, J. Kuusisto, C. E. Alpers, and C. M. Otto. 1996. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of 'degenerative' valvular aortic stenosis. Arterioscler. Thromb. Vasc. Biol. 16: 523-532. https://doi.org/10.1161/01.ATV.16.4.523
- Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. 2009. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29: 254-260. https://doi.org/10.1161/ATVBAHA.108.176347
- Kaden, J. J., C. E. Dempfle, R. Grobholz, H. T. Tran, R. Kilic, A. Sarikoc, M. Brueckmann, C. Vahl, S. Hagl, K. K. Haase, and M. Borggrefe. 2003. Interleukin-1 beta promotes matrix metal-loproteinase expression and cell proliferation in calcific aortic valve stenosis. Atherosclerosis 170: 205-211. https://doi.org/10.1016/S0021-9150(03)00284-3
- Weiss, R. M., J. D. Miller, and D. D. Heistad. 2013. Fibrocalcific aortic valve disease: opportunity to understand disease mechanisms using mouse models. Circ. Res. 113: 209-222. https://doi.org/10.1161/CIRCRESAHA.113.300153
- Mahler, G. J., E. J. Farrar, and J. T. Butcher. 2013. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33: 121-130. https://doi.org/10.1161/ATVBAHA.112.300504
- Guerraty, M. A., G. R. Grant, J. W. Karanian, O. A. Chiesa, W. F. Pritchard, and P. F. Davies. 2010. Hypercholesterolemia induces side-specific phenotypic changes and peroxisome proliferator-activated receptor-gamma pathway activation in swine aortic valve endothelium. Arterioscler. Thromb. Vasc. Biol. 30: 225-231. https://doi.org/10.1161/ATVBAHA.109.198549
- Duan, S. Z., M. G. Usher, and R. M. Mortensen. 2008. Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ. Res. 102: 283-294. https://doi.org/10.1161/CIRCRESAHA.107.164384
- Jackson, S. M., F. Parhami, X. P. Xi, J. A. Berliner, W. A. Hsueh, R. E. Law, and L. L. Demer. 1999. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler. Thromb. Vasc. Biol. 19: 2094-2104. https://doi.org/10.1161/01.ATV.19.9.2094
- Aikawa, E., M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder. 2007. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115: 377-386. https://doi.org/10.1161/CIRCULATIONAHA.106.654913
- Otto, C. M., J. Kuusisto, D. D. Reichenbach, A. M. Gown, and K. D. O'Brien. 1994. Characterization of the early lesion of 'degenerative' valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90: 844-853. https://doi.org/10.1161/01.CIR.90.2.844
- Bosse, Y., A. Miqdad, D. Fournier, A. Pepin, P. Pibarot, and P. Mathieu. 2009. Refining molecular pathways leading to calcific aortic valve stenosis by studying gene expression profile of normal and calcified stenotic human aortic valves. Circ. Cardiovasc. Genet. 2: 489-498. https://doi.org/10.1161/CIRCGENETICS.108.820795
- Kaden, J. J., R. Kilic, A. Sarikoc, S. Hagl, S. Lang, U. Hoffmann, M. Brueckmann, and M. Borggrefe. 2005. Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int. J. Mol. Med. 16: 869-872. https://doi.org/10.3892/ijmm.16.5.869
- Khan, R., and R. Sheppard. 2006. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118: 10-24. https://doi.org/10.1111/j.1365-2567.2006.02336.x
- Parameswaran, N., and S. Patial. 2010. Tumor necrosis factor-alpha signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 20: 87-103. https://doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10
- Aikawa, E., M. Aikawa, P. Libby, J. L. Figueiredo, G. Rusanescu, Y. Iwamoto, D. Fukuda, R. H. Kohler, G. P. Shi, F. A. Jaffer, and R. Weissleder. 2009. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation 119: 1785-1794. https://doi.org/10.1161/CIRCULATIONAHA.108.827972
- Bobryshev, Y. V. 2006. Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37: 208-222. https://doi.org/10.1016/j.micron.2005.10.007
- Brown, M. S., and J. L. Goldstein. 1983. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 52: 223-261. https://doi.org/10.1146/annurev.bi.52.070183.001255
- Choi, J. H., Y. Do, C. Cheong, H. Koh, S. B. Boscardin, Y. S. Oh, L. Bozzacco, C. Trumpfheller, C. G. Park, and R. M. Steinman. 2009. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J. Exp. Med. 206: 497-505. https://doi.org/10.1084/jem.20082129
- Choi, J. H., C. Cheong, D. B. Dandamudi, C. G. Park, A. Rodriguez, S. Mehandru, K. Velinzon, I. H. Jung, J. Y. Yoo, G. T. Oh, and R. M. Steinman. 2011. Flt3 signaling-dependent dendritic cells protect against atherosclerosis. Immunity 35: 819-831. https://doi.org/10.1016/j.immuni.2011.09.014
- Koltsova, E. K., and K. Ley. 2011. How dendritic cells shape atherosclerosis. Trends Immunol. 32: 540-547. https://doi.org/10.1016/j.it.2011.07.001
- Steiner, I., L. Krbal, T. Rozkos, J. Harrer, and J. Laco. 2012. Calcific aortic valve stenosis: Immunohistochemical analysis of inflammatory infiltrate. Pathol. Res. Pract. 208: 231-234. https://doi.org/10.1016/j.prp.2012.02.009
- Wu, H. D., M. S. Maurer, R. A. Friedman, C. C. Marboe, E. M. Ruiz-Vazquez, R. Ramakrishnan, A. Schwartz, M. D. Tilson, A. S. Stewart, and R. Winchester. 2007. The lymphocytic infiltration in calcific aortic stenosis predominantly consists of clonally expanded T cells. J. Immunol. 178: 5329-5339. https://doi.org/10.4049/jimmunol.178.8.5329
- Winchester, R., M. Wiesendanger, W. O'Brien, H. Z. Zhang, M. S. Maurer, L. D. Gillam, A. Schwartz, C. Marboe, and A. S. Stewart. 2011. Circulating activated and effector memory T cells are associated with calcification and clonal expansions in bicuspid and tricuspid valves of calcific aortic stenosis. J. Immunol. 187: 1006-1014. https://doi.org/10.4049/jimmunol.1003521
- Natorska, J., G. Marek, J. Sadowski, and A. Undas. 2016. Presence of B cells within aortic valves in patients with aortic stenosis: Relation to severity of the disease. J. Cardiol. 67: 80-85. https://doi.org/10.1016/j.jjcc.2015.05.002
- Han, S. B., Y. D. Yoon, H. J. Ahn, H. S. Lee, C. W. Lee, W. K. Yoon, S. K. Park, and H. M. Kim. 2003. Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. Int. Immunopharmacol. 3: 1301-1312. https://doi.org/10.1016/S1567-5769(03)00118-8
- Mackay, F., and J. L. Browning. 2002. BAFF: a fundamental survival factor for B cells. Nat. Rev. Immunol. 2: 465-475. https://doi.org/10.1038/nri844
- Mackay, F., P. Schneider, P. Rennert, and J. Browning. 2003. BAFF AND APRIL: a tutorial on B cell survival. Annu. Rev. Immunol. 21: 231-264. https://doi.org/10.1146/annurev.immunol.21.120601.141152
- Schneider, P., F. MacKay, V. Steiner, K. Hofmann, J. L. Bodmer, N. Holler, C. Ambrose, P. Lawton, S. Bixler, H. cha-Orbea, D. Valmori, P. Romero, C. Werner-Favre, R. H. Zubler, J. L. Browning, and J. Tschopp. 1999. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189: 1747-1756. https://doi.org/10.1084/jem.189.11.1747
- Nardelli, B., O. Belvedere, V. Roschke, P. A. Moore, H. S. Olsen, T. S. Migone, S. Sosnovtseva, J. A. Carrell, P. Feng, J. G. Giri, and D. M. Hilbert. 2001. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97: 198-204. https://doi.org/10.1182/blood.V97.1.198
- Helske, S., S. Syvaranta, M. Kupari, J. Lappalainen, M. Laine, J. Lommi, H. Turto, M. Mayranpaa, K. Werkkala, P. T. Kovanen, and K. A. Lindstedt. 2006. Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. Eur. Heart J. 27: 1495-1504. https://doi.org/10.1093/eurheartj/ehi706
- Wypasek, E., J. Natorska, G. Grudzien, G. Filip, J. Sadowski, and A. Undas. 2013. Mast cells in human stenotic aortic valves are associated with the severity of stenosis. Inflammation 36: 449-456. https://doi.org/10.1007/s10753-012-9565-z
- Syvaranta, S., S. Helske, M. Laine, J. Lappalainen, M. Kupari, M. I. Mayranpaa, K. A. Lindstedt, and P. T. Kovanen. 2010. Vascular endothelial growth factor-secreting mast cells and myofibroblasts: a novel self-perpetuating angiogenic pathway in aortic valve stenosis. Arterioscler. Thromb. Vasc. Biol. 30: 1220-1227. https://doi.org/10.1161/ATVBAHA.109.198267
- O'Reilly, M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, and J. Folkman. 1997. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277-285. https://doi.org/10.1016/S0092-8674(00)81848-6
- Syvaranta, S., S. Helske, J. Lappalainen, M. Kupari, and P. T. Kovanen. 2012. Lymphangiogenesis in aortic valve stenosis--novel regulatory roles for valvular myofibroblasts and mast cells. Atherosclerosis 221: 366-374. https://doi.org/10.1016/j.atherosclerosis.2011.12.034