DOI QR코드

DOI QR Code

Involvement of Immune Cell Network in Aortic Valve Stenosis: Communication between Valvular Interstitial Cells and Immune Cells

  • Seung Hyun Lee (Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University) ;
  • Jae-Hoon Choi (Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University)
  • Received : 2015.12.05
  • Accepted : 2016.01.16
  • Published : 2016.02.29

Abstract

Aortic valve stenosis is a heart disease prevalent in the elderly characterized by valvular calcification, fibrosis, and inflammation, but its exact pathogenesis remains unclear. Previously, aortic valve stenosis was thought to be caused by chronic passive and degenerative changes associated with aging. However, recent studies have demonstrated that atherosclerotic processes and inflammation can induce valvular calcification and bone deposition, leading to valvular stenosis. In particular, the most abundant cell type in cardiac valves, valvular interstitial cells, can differentiate into myofibroblasts and osteoblast-like cells, leading to valvular calcification and stenosis. Differentiation of valvular interstitial cells can be trigged by inflammatory stimuli from several immune cell types, including macrophages, dendritic cells, T cells, B cells, and mast cells. This review indicates that crosstalk between immune cells and valvular interstitial cells plays an important role in the development of aortic valve stenosis.

Keywords

Acknowledgement

This work was supported by the research fund of Hanyang University (HY-2012-N).

References

  1. Dweck, M. R., N. A. Boon, and D. E. Newby. 2012. Calcific aortic stenosis: a disease of the valve and the myocardium. J. Am. Coll. Cardiol. 60: 1854-1863. https://doi.org/10.1016/j.jacc.2012.02.093
  2. Towler, D. A. 2013. Molecular and cellular aspects of calcific aortic valve disease. Circ. Res. 113: 198-208. https://doi.org/10.1161/CIRCRESAHA.113.300155
  3. Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. 2006. Burden of valvular heart diseases: a population-based study. Lancet 368: 1005-1011. https://doi.org/10.1016/S0140-6736(06)69208-8
  4. Otto, C. M., B. K. Lind, D. W. Kitzman, B. J. Gersh, and D. S. Siscovick. 1999. Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N. Engl. J. Med. 341: 142-147. https://doi.org/10.1056/NEJM199907153410302
  5. Otto, C. M. 2000. Timing of aortic valve surgery. Heart 84: 211-218. https://doi.org/10.1136/heart.84.2.211
  6. Moura, L. M., S. F. Ramos, J. L. Zamorano, I. M. Barros, L. F. Azevedo, F. Rocha-Goncalves, and N. M. Rajamannan. 2007. Rosuvastatin affecting aortic valve endothelium to slow the progression of aortic stenosis. J. Am. Coll. Cardiol. 49: 554-561. https://doi.org/10.1016/j.jacc.2006.07.072
  7. Rosenhek, R., F. Rader, N. Loho, H. Gabriel, M. Heger, U. Klaar, M. Schemper, T. Binder, G. Maurer, and H. Baumgartner. 2004. Statins but not angiotensin-converting enzyme inhibitors delay progression of aortic stenosis. Circulation 110: 1291-1295. https://doi.org/10.1161/01.CIR.0000140723.15274.53
  8. Cowell, S. J., D. E. Newby, R. J. Prescott, P. Bloomfield, J. Reid, D. B. Northridge, and N. A. Boon. 2005. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N. Engl. J. Med. 352: 2389-2397. https://doi.org/10.1056/NEJMoa043876
  9. Rossebo, A. B., T. R. Pedersen, K. Boman, P. Brudi, J. B. Chambers, K. Egstrup, E. Gerdts, C. Gohlke-Barwolf, I. Holme, Y. A. Kesaniemi, W. Malbecq, C. A. Nienaber, S. Ray, T. Skjaerpe, K. Wachtell, and R. Willenheimer. 2008. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med. 359: 1343-1356. https://doi.org/10.1056/NEJMoa0804602
  10. Aikawa, E., and C. M. Otto. 2012. Look more closely at the valve: imaging calcific aortic valve disease. Circulation 125: 9-11. https://doi.org/10.1161/CIRCULATIONAHA.111.073452
  11. New, S. E., and E. Aikawa. 2011. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res. 108: 1381-1391. https://doi.org/10.1161/CIRCRESAHA.110.234146
  12. Combs, M. D., and K. E. Yutzey. 2009. Heart valve development: regulatory networks in development and disease. Circ. Res. 105: 408-421. https://doi.org/10.1161/CIRCRESAHA.109.201566
  13. Wang, H., L. A. Leinwand, and K. S. Anseth. 2014. Cardiac valve cells and their microenvironment--insights from in vitro studies. Nat. Rev. Cardiol. 11: 715-727. https://doi.org/10.1038/nrcardio.2014.162
  14. Liu, A. C., V. R. Joag, and A. I. Gotlieb. 2007. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171: 1407-1418. https://doi.org/10.2353/ajpath.2007.070251
  15. Rajamannan, N. M., F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O'Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto. 2011. Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation 124: 1783-1791. https://doi.org/10.1161/CIRCULATIONAHA.110.006767
  16. Jian, B., N. Narula, Q. Y. Li, E. R. Mohler, III, and R. J. Levy. 2003. Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann. Thorac. Surg. 75: 457-465. https://doi.org/10.1016/S0003-4975(02)04312-6
  17. Li, C., and A. I. Gotlieb. 2011. Transforming growth factor-beta regulates the growth of valve interstitial cells in vitro. Am. J. Pathol. 179: 1746-1755. https://doi.org/10.1016/j.ajpath.2011.06.007
  18. Osman, L., M. H. Yacoub, N. Latif, M. Amrani, and A. H. Chester. 2006. Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation 114: I547-I552. https://doi.org/10.1161/CIRCULATIONAHA.105.001115
  19. Hinz, B. 2007. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127: 526-537. https://doi.org/10.1038/sj.jid.5700613
  20. Rajamannan, N. M., M. Subramaniam, D. Rickard, S. R. Stock, J. Donovan, M. Springett, T. Orszulak, D. A. Fullerton, A. J. Tajik, R. O. Bonow, and T. Spelsberg. 2003. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107: 2181-2184. https://doi.org/10.1161/01.CIR.0000070591.21548.69
  21. Yang, X., X. Meng, X. Su, D. C. Mauchley, L. Ao, J. C. Cleveland, Jr., and D. A. Fullerton. 2009. Bone morphogenic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial cells: role of Smad1 and extracellular signal-regulated kinase 1/2. J. Thorac. Cardiovasc. Surg. 138: 1008-1015. https://doi.org/10.1016/j.jtcvs.2009.06.024
  22. Alexopoulos, A., V. Bravou, S. Peroukides, L. Kaklamanis, J. Varakis, D. Alexopoulos, and H. Papadaki. 2010. Bone regulatory factors NFATc1 and Osterix in human calcific aortic valves. Int. J. Cardiol. 139: 142-149. https://doi.org/10.1016/j.ijcard.2008.10.014
  23. Filip, D. A., A. Nistor, A. Bulla, A. Radu, F. Lupu, and M. Simionescu. 1987. Cellular events in the development of valvular atherosclerotic lesions induced by experimental hypercholesterolemia. Atherosclerosis 67: 199-214. https://doi.org/10.1016/0021-9150(87)90280-2
  24. Syvaranta, S., M. anne-Kinnunen, K. Oorni, R. Oksjoki, M. Kupari, P. T. Kovanen, and S. Helske-Suihko. 2014. Potential pathological roles for oxidized low-density lipoprotein and scavenger receptors SR-AI, CD36, and LOX-1 in aortic valve stenosis. Atherosclerosis 235: 398-407. https://doi.org/10.1016/j.atherosclerosis.2014.05.933
  25. Meng, X., L. Ao, Y. Song, A. Babu, X. Yang, M. Wang, M. J. Weyant, C. A. Dinarello, J. C. Cleveland, Jr., and D. A. Fullerton. 2008. Expression of functional Toll-like receptors 2 and 4 in human aortic valve interstitial cells: potential roles in aortic valve inflammation and stenosis. Am. J. Physiol. Cell Physiol 294: C29-C35. https://doi.org/10.1152/ajpcell.00137.2007
  26. Yang, X., D. A. Fullerton, X. Su, L. Ao, J. C. Cleveland, Jr., and X. Meng. 2009. Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2. J. Am. Coll. Cardiol. 53: 491-500. https://doi.org/10.1016/j.jacc.2008.09.052
  27. Bischoff, J., and E. Aikawa. 2011. Progenitor cells confer plasticity to cardiac valve endothelium. J. Cardiovasc. Transl. Res. 4: 710-719. https://doi.org/10.1007/s12265-011-9312-0
  28. Olsson, M., J. Thyberg, and J. Nilsson. 1999. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler. Thromb. Vasc. Biol. 19: 1218-1222. https://doi.org/10.1161/01.ATV.19.5.1218
  29. Mohty, D., P. Pibarot, J. P. Despres, C. Cote, B. Arsenault, A. Cartier, P. Cosnay, C. Couture, and P. Mathieu. 2008. Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis. Arterioscler. Thromb. Vasc. Biol. 28: 187-193. https://doi.org/10.1161/ATVBAHA.107.154989
  30. O'Brien, K. D., D. D. Reichenbach, S. M. Marcovina, J. Kuusisto, C. E. Alpers, and C. M. Otto. 1996. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of 'degenerative' valvular aortic stenosis. Arterioscler. Thromb. Vasc. Biol. 16: 523-532. https://doi.org/10.1161/01.ATV.16.4.523
  31. Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. 2009. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29: 254-260. https://doi.org/10.1161/ATVBAHA.108.176347
  32. Kaden, J. J., C. E. Dempfle, R. Grobholz, H. T. Tran, R. Kilic, A. Sarikoc, M. Brueckmann, C. Vahl, S. Hagl, K. K. Haase, and M. Borggrefe. 2003. Interleukin-1 beta promotes matrix metal-loproteinase expression and cell proliferation in calcific aortic valve stenosis. Atherosclerosis 170: 205-211. https://doi.org/10.1016/S0021-9150(03)00284-3
  33. Weiss, R. M., J. D. Miller, and D. D. Heistad. 2013. Fibrocalcific aortic valve disease: opportunity to understand disease mechanisms using mouse models. Circ. Res. 113: 209-222. https://doi.org/10.1161/CIRCRESAHA.113.300153
  34. Mahler, G. J., E. J. Farrar, and J. T. Butcher. 2013. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33: 121-130. https://doi.org/10.1161/ATVBAHA.112.300504
  35. Guerraty, M. A., G. R. Grant, J. W. Karanian, O. A. Chiesa, W. F. Pritchard, and P. F. Davies. 2010. Hypercholesterolemia induces side-specific phenotypic changes and peroxisome proliferator-activated receptor-gamma pathway activation in swine aortic valve endothelium. Arterioscler. Thromb. Vasc. Biol. 30: 225-231. https://doi.org/10.1161/ATVBAHA.109.198549
  36. Duan, S. Z., M. G. Usher, and R. M. Mortensen. 2008. Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ. Res. 102: 283-294. https://doi.org/10.1161/CIRCRESAHA.107.164384
  37. Jackson, S. M., F. Parhami, X. P. Xi, J. A. Berliner, W. A. Hsueh, R. E. Law, and L. L. Demer. 1999. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler. Thromb. Vasc. Biol. 19: 2094-2104. https://doi.org/10.1161/01.ATV.19.9.2094
  38. Aikawa, E., M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder. 2007. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115: 377-386. https://doi.org/10.1161/CIRCULATIONAHA.106.654913
  39. Otto, C. M., J. Kuusisto, D. D. Reichenbach, A. M. Gown, and K. D. O'Brien. 1994. Characterization of the early lesion of 'degenerative' valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90: 844-853. https://doi.org/10.1161/01.CIR.90.2.844
  40. Bosse, Y., A. Miqdad, D. Fournier, A. Pepin, P. Pibarot, and P. Mathieu. 2009. Refining molecular pathways leading to calcific aortic valve stenosis by studying gene expression profile of normal and calcified stenotic human aortic valves. Circ. Cardiovasc. Genet. 2: 489-498. https://doi.org/10.1161/CIRCGENETICS.108.820795
  41. Kaden, J. J., R. Kilic, A. Sarikoc, S. Hagl, S. Lang, U. Hoffmann, M. Brueckmann, and M. Borggrefe. 2005. Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int. J. Mol. Med. 16: 869-872. https://doi.org/10.3892/ijmm.16.5.869
  42. Khan, R., and R. Sheppard. 2006. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118: 10-24. https://doi.org/10.1111/j.1365-2567.2006.02336.x
  43. Parameswaran, N., and S. Patial. 2010. Tumor necrosis factor-alpha signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 20: 87-103. https://doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10
  44. Aikawa, E., M. Aikawa, P. Libby, J. L. Figueiredo, G. Rusanescu, Y. Iwamoto, D. Fukuda, R. H. Kohler, G. P. Shi, F. A. Jaffer, and R. Weissleder. 2009. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation 119: 1785-1794. https://doi.org/10.1161/CIRCULATIONAHA.108.827972
  45. Bobryshev, Y. V. 2006. Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37: 208-222. https://doi.org/10.1016/j.micron.2005.10.007
  46. Brown, M. S., and J. L. Goldstein. 1983. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 52: 223-261. https://doi.org/10.1146/annurev.bi.52.070183.001255
  47. Choi, J. H., Y. Do, C. Cheong, H. Koh, S. B. Boscardin, Y. S. Oh, L. Bozzacco, C. Trumpfheller, C. G. Park, and R. M. Steinman. 2009. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J. Exp. Med. 206: 497-505. https://doi.org/10.1084/jem.20082129
  48. Choi, J. H., C. Cheong, D. B. Dandamudi, C. G. Park, A. Rodriguez, S. Mehandru, K. Velinzon, I. H. Jung, J. Y. Yoo, G. T. Oh, and R. M. Steinman. 2011. Flt3 signaling-dependent dendritic cells protect against atherosclerosis. Immunity 35: 819-831. https://doi.org/10.1016/j.immuni.2011.09.014
  49. Koltsova, E. K., and K. Ley. 2011. How dendritic cells shape atherosclerosis. Trends Immunol. 32: 540-547. https://doi.org/10.1016/j.it.2011.07.001
  50. Steiner, I., L. Krbal, T. Rozkos, J. Harrer, and J. Laco. 2012. Calcific aortic valve stenosis: Immunohistochemical analysis of inflammatory infiltrate. Pathol. Res. Pract. 208: 231-234. https://doi.org/10.1016/j.prp.2012.02.009
  51. Wu, H. D., M. S. Maurer, R. A. Friedman, C. C. Marboe, E. M. Ruiz-Vazquez, R. Ramakrishnan, A. Schwartz, M. D. Tilson, A. S. Stewart, and R. Winchester. 2007. The lymphocytic infiltration in calcific aortic stenosis predominantly consists of clonally expanded T cells. J. Immunol. 178: 5329-5339. https://doi.org/10.4049/jimmunol.178.8.5329
  52. Winchester, R., M. Wiesendanger, W. O'Brien, H. Z. Zhang, M. S. Maurer, L. D. Gillam, A. Schwartz, C. Marboe, and A. S. Stewart. 2011. Circulating activated and effector memory T cells are associated with calcification and clonal expansions in bicuspid and tricuspid valves of calcific aortic stenosis. J. Immunol. 187: 1006-1014. https://doi.org/10.4049/jimmunol.1003521
  53. Natorska, J., G. Marek, J. Sadowski, and A. Undas. 2016. Presence of B cells within aortic valves in patients with aortic stenosis: Relation to severity of the disease. J. Cardiol. 67: 80-85. https://doi.org/10.1016/j.jjcc.2015.05.002
  54. Han, S. B., Y. D. Yoon, H. J. Ahn, H. S. Lee, C. W. Lee, W. K. Yoon, S. K. Park, and H. M. Kim. 2003. Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. Int. Immunopharmacol. 3: 1301-1312. https://doi.org/10.1016/S1567-5769(03)00118-8
  55. Mackay, F., and J. L. Browning. 2002. BAFF: a fundamental survival factor for B cells. Nat. Rev. Immunol. 2: 465-475. https://doi.org/10.1038/nri844
  56. Mackay, F., P. Schneider, P. Rennert, and J. Browning. 2003. BAFF AND APRIL: a tutorial on B cell survival. Annu. Rev. Immunol. 21: 231-264. https://doi.org/10.1146/annurev.immunol.21.120601.141152
  57. Schneider, P., F. MacKay, V. Steiner, K. Hofmann, J. L. Bodmer, N. Holler, C. Ambrose, P. Lawton, S. Bixler, H. cha-Orbea, D. Valmori, P. Romero, C. Werner-Favre, R. H. Zubler, J. L. Browning, and J. Tschopp. 1999. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189: 1747-1756. https://doi.org/10.1084/jem.189.11.1747
  58. Nardelli, B., O. Belvedere, V. Roschke, P. A. Moore, H. S. Olsen, T. S. Migone, S. Sosnovtseva, J. A. Carrell, P. Feng, J. G. Giri, and D. M. Hilbert. 2001. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97: 198-204. https://doi.org/10.1182/blood.V97.1.198
  59. Helske, S., S. Syvaranta, M. Kupari, J. Lappalainen, M. Laine, J. Lommi, H. Turto, M. Mayranpaa, K. Werkkala, P. T. Kovanen, and K. A. Lindstedt. 2006. Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. Eur. Heart J. 27: 1495-1504. https://doi.org/10.1093/eurheartj/ehi706
  60. Wypasek, E., J. Natorska, G. Grudzien, G. Filip, J. Sadowski, and A. Undas. 2013. Mast cells in human stenotic aortic valves are associated with the severity of stenosis. Inflammation 36: 449-456. https://doi.org/10.1007/s10753-012-9565-z
  61. Syvaranta, S., S. Helske, M. Laine, J. Lappalainen, M. Kupari, M. I. Mayranpaa, K. A. Lindstedt, and P. T. Kovanen. 2010. Vascular endothelial growth factor-secreting mast cells and myofibroblasts: a novel self-perpetuating angiogenic pathway in aortic valve stenosis. Arterioscler. Thromb. Vasc. Biol. 30: 1220-1227. https://doi.org/10.1161/ATVBAHA.109.198267
  62. O'Reilly, M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, and J. Folkman. 1997. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277-285. https://doi.org/10.1016/S0092-8674(00)81848-6
  63. Syvaranta, S., S. Helske, J. Lappalainen, M. Kupari, and P. T. Kovanen. 2012. Lymphangiogenesis in aortic valve stenosis--novel regulatory roles for valvular myofibroblasts and mast cells. Atherosclerosis 221: 366-374. https://doi.org/10.1016/j.atherosclerosis.2011.12.034