DOI QR코드

DOI QR Code

Critical Flux with Respect to Aeration Rate for the Submerged Microfiltration Hollow Fiber Membrane in the Activated Sludge Solution

활성슬러지 수용액 내 침지식 정밀여과용 중공사막의 산기량에 따른 임계 투과유속

  • Jeong, Doin (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • 정도인 (서울과학기술대학교 화공생명공학과) ;
  • 정건용 (서울과학기술대학교 화공생명공학과)
  • Received : 2016.04.20
  • Accepted : 2016.04.28
  • Published : 2016.04.30

Abstract

In this study critical permeation flux was measured by the flux-step method with respect to aeration rate. The hollow fiber membrane module which has $85cm^2$ of effective area and $0.4{\mu}m$ nominal pore size was submerged in the activated sludge solution of MLSS 5,000 mg/L. The critical flux for without aeration was measured of $15.2L/m^2{\cdot}h$. However, the critical flux increased from 20.6 to $32.5L/m^2{\cdot}h$ as the aeration rate increased from 100 to 1,000 mL/min.

본 연구에서는 산기량의 변화에 따른 임계 투과유속을 투과유속단법으로 측정하였다. 유효 막 면적이 $85cm^2$이고 공칭 세공크기가 $0.4{\mu}m$인 중공사형 막모듈을 MLSS 5,000 mg/L인 활성슬러지 수용액에 침지시켜 투과 실험하였다. 산기시키지 않을 경우 임계 투과유속은 $15.2L/m^2{\cdot}h$로 측정되었으나 산기량을 100에서 1,000 mL/min까지 증가시키면 임계 투과 유속이 20.6에서 $32.5L/m^2{\cdot}h$까지 크게 상승하였다.

Keywords

References

  1. K. Sutherland, "The rise of membrane bioreactors", Filtr. Separat., 47, 14 (2010).
  2. M. Pribyl, F. Tucek, P. A. Wilderer, and J. Wanner, "Amount and nature of soluble refractory organics produced by activated sludge micro- organisms in sequencing batch and continuous flow reactors", Water Sci. Technol., 35, 27 (1997).
  3. V. J. Boero, W. W. Eckenfelder, Jr., and A. R. Bowers, "Soluble microbial product formation in biological systems", Water Sci. Technol., 23, 1067 (1991). https://doi.org/10.2166/wst.1991.0558
  4. J. Hermia, "Constant pressure blocking filtration laws-application to power-lar non-newtonian fluids", Trans. Inst. Chem. Eng., 60, 183 (1982).
  5. S. Chellam and W. Xu, "Blocking laws analysis of dead-end constant flux microfiltration of compressible cakes", J. Colloid Interf. Sci., 301, 248 (2006). https://doi.org/10.1016/j.jcis.2006.04.064
  6. D. C. Kim and K. Y. Chung, "Membrane fouling models for activated sludge cakes", Membr. J., 24, 249 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.3.249
  7. A. Fenu, J. Roels, T. Wambecq, K. De Gussem, C. Thoeye, G. De Gueldre, and B. V. D. Steene, "Energy audit of a full scale MBR system", Desalination, 262, 121 (2010). https://doi.org/10.1016/j.desal.2010.05.057
  8. J. Lebegue, M. Heran, and A. Grasmick, "Membrane bioreactor: distribution of critical flux throughout an immersed HF bundle", Desalination, 231, 245 (2008). https://doi.org/10.1016/j.desal.2007.10.028
  9. W. S. Guo, S. Vigneswaran, H. H. Ngo, and W. Xing, "Experimental investigation on acclimatized wastewater for membrane bioreactors" Desalination, 207, 383 (2007). https://doi.org/10.1016/j.desal.2006.07.013
  10. J. Y. Park and J. H. Hwang, "Hybrid water treatment of photocatalyst coated polypropylene beads and ceramic membranes: Effect of membrane and water back-flushing period", Membr. J., 23, 211 (2013).
  11. Y. K. Choi, O. S. Kwon, H. S. Park, and S. H. Noh, "Mechanism of gel layer removal for intermittent aeration in the MBR process", Membr. J., 16, 188 (2006).
  12. K. Y. Kim, J. H. Kim, Y. H. Kim, and H. S. Kim, "The effect of coagulant on filtration performance in submerged MBR system", Membr. J., 16, 182 (2006).
  13. R. W. Field, D. Wu, J. A. Howell, and B. B. Gupta, "Critical flux concept for microfiltration fouling", J. Membr. Sci., 100, 259 (1995). https://doi.org/10.1016/0376-7388(94)00265-Z
  14. E. H. Bouhabia, R. Ben Aim, and H. Buisson, "Microfiltration of activated sludge using submerged membrane with air bubbling", Desalination, 118, 315 (1998). https://doi.org/10.1016/S0011-9164(98)00156-8
  15. P. L. Clech, B. Jefferson, I. S. Chang, and S. J. Judd, "Critical flux determination by the flux-step method in a submerged membrane bioreactor", J. Membr. Sci., 227, 81 (2003). https://doi.org/10.1016/j.memsci.2003.07.021
  16. P. Marel, A. Zwijnenburg, A. Kemperman, M. Wessling, H. Temmink, and W. Meer, "An improved flux-step method to determine the critical flux and the critical flux for irreversibility in a membrane bioreactor", J. Membr. Sci., 332, 24 (2009). https://doi.org/10.1016/j.memsci.2009.01.046
  17. S. Chellam and N. G. Cogan, "Colloidal and bacterial fouling during constant flux microfiltration: Comparison of classical blocking laws with a unified model combining pore blocking and EPS secretion", J. Membr. Sci., 382, 148 (2011). https://doi.org/10.1016/j.memsci.2011.08.001
  18. V. Diez, D. Ezquerra, J. L. Cabezas, A. Garcia, and C. Ramos, "A modified method for evaluation of critical flux, fluling rate and in situ determination of resistance and compressibility in MBR under different fouling conditions", J. Membr. Sci., 453, 1 (2014). https://doi.org/10.1016/j.memsci.2013.10.055
  19. D. Jeong, S. H. Jung, S. Lee, and K. Y. Chung, "Transmembrane pressure with respect to backwashing and sinusoidal flux continuous operation modes for the submerged hollow fiber membrane in the activated sludge solution", Membr. J., 25, 524 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.524