DOI QR코드

DOI QR Code

Development of molecular markers for varietal identification of Brassica juncea on the basis of the polymorphic sequence of ITS regions and MITE families

갓 (Brassica juncea) 품종구분을 위한 ITS 영역 및 MITE Family 정보를 이용한 분자표지 개발

  • Yang, Kiwoung (Department of Horticulture, Sunchon National University) ;
  • Yi, Go-eun (Department of Horticulture, Sunchon National University) ;
  • Robin, Arif Hasan Khan (Department of Horticulture, Sunchon National University) ;
  • Jeong, Namhee (Department of Horticulture, Sunchon National University) ;
  • Lee, Yong-Hyuk (Agricultural Technology Center of Yeosu City) ;
  • Park, Jongin (Department of Horticulture, Sunchon National University) ;
  • Kim, Hoyteak (Department of Horticulture, Sunchon National University) ;
  • Chung, Mi-Young (Department of Agricultural Education, Sunchon National Universtiy) ;
  • Nou, Ill-Sup (Department of Horticulture, Sunchon National University)
  • 양기웅 (순천대학교 생명산업과학대학 원예학과) ;
  • 이고은 (순천대학교 생명산업과학대학 원예학과) ;
  • 아리프 하산 칸 로빈 (순천대학교 생명산업과학대학 원예학과) ;
  • 정남희 (순천대학교 생명산업과학대학 원예학과) ;
  • 이용혁 (여수시 농업기술센터) ;
  • 박종인 (순천대학교 생명산업과학대학 원예학과) ;
  • 김회택 (순천대학교 생명산업과학대학 원예학과) ;
  • 정미영 (순천대학교 사범대학 농업교육과) ;
  • 노일섭 (순천대학교 생명산업과학대학 원예학과)
  • Received : 2015.11.24
  • Accepted : 2016.03.23
  • Published : 2016.04.30

Abstract

Brassica juncea (2n = 4x = 36, AABB genome, 1,068 Mb) is a U's triangle species and an amphidiploid derivative of B. rapa and B. nigra. Fifteen varieties were used to study the ITS (internal transcribed spacer) regions of ribosomal DNA and MITEs (miniature inverted-repeat transposable elements) with a view of developing specific molecular markers. ITSs and MITEs are an excellent resource for developing DNA markers for genomics and evolutionary studies because most of them are stably inherited and present in high copy numbers. The ITS (ITS1 and ITS2) sequence was compared with the consensus sequence of B. rapa and B. nigra. Variation in ITS1 created two separate groups among 15 varieties, with 10 varieties in one group and 5 in the other. Phylogenetic analysis revealed two major clusters for those 10 and 5 varieties. Among the 160 different MITE primers used to evaluate the selected 15 varieties of B. juncea, 70 were related to the Stowaway, 79 to the Tourist, 6 to the hAT, and 5 to the Mutator super-families of MITEs. Of 160 markers examined, 32 were found to be polymorphic when fifteen different varieties of B. juncea were evaluated. The variety 'Blackgat' was different from the other mustard varieties with respect to both phenotype and genotype. The diversity of 47 additional accessions could be verified using eight selected molecular markers derived from MITE family sequences. The polymorphic markers identified in this study can be used for varietal classification, variety protection, and other breeding purposes.

갓(Brassica juncea; 2n = 4x = 36, AABB genome, 1,068Mb)은 U's triangle의 배추와 흑겨자 사이의 복이배체 작물로 구분한다. 본 연구는 갓 15 품종의 ribosomal DNA ITS 영역과 MITE를 이용하여 갓의 유연관계 및 품종구분 분자표지를 확인하였다. Ribosomal DNA ITS 영역은 종 및 품종의 유연관계를 알아보는 연구로 많이 사용되고 있어서, 이를 이용하여 갓 15 품종의 유연관계를 알아보았다. 또한, MITE는 매우 많은 copy 수를 가지고 있고, 유전적으로 안정적이기 때문에 유전체 및 진화 연구에 매우 적합한 재료이다. MITE를 이용한 갓의 품종구분 분자표지를 확인하기 위해 MITE super-families 중 Stowaway(BraSto) 관련 70점, Tourist(BraTo) 관련 79점, hAT(BrahAT) 관련 6점, Mutator(BraMu) 관련 5점으로 품종구분 표지를 알아보았다. 총 160점의 분자표지 중 32점이 갓 15 품종에서 뚜렷한 다형성을 보였다. 특히, 흑갓은 표현형뿐만 아니라 유전자형도 매우 다르게 나타났다. 또한 8점의 MITE 분자표지를 활용하여 47점의 유전자원에서 다형성 및 품종구분 표지로의 활용 가능성을 확인하였다. 이러한 다형성 표지들은 갓의 품종구분 및 품종 보호에 매우 유용하게 사용할 수 있을 것이라 기대한다.

Keywords

References

  1. Al-Shehbaz I, Beilstein M, Kellogg E (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89-120. doi:10.1007/s00606-006-0415-z
  2. Amundsen K, Rotter D, Li HM, Messing J, Jung G, Belanger F, Warnke S (2011) Miniature inverted-repeat transposable element identification and genetic marker development in. Crop Science 51:854-861. doi:10.2135/cropsci2010.04.0215
  3. Casa AM, Nagel A, Wessler SR (2004) MITE display. Methods Mol Biol 260:175-188. doi:10.1385/1-59259-755-6:175
  4. Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1-11. doi:10.1016/S0378-1119(03)00557-2
  5. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS One 5:e8613. doi:10.1371/journal.pone.0008613
  6. Chen J, Hu Q, Zhang Y, Lu C, Kuang H (2014) P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res 42: D1176-D1181. doi:10.1093/nar/gkt1000
  7. Downie SR, Katz-Downie DS (1996) A molecular phylogeny of Apiaceae subfamily Apiaceae: evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am J Bot 83:234-251. doi:10.2307/2445943
  8. Fu J, Zhang MF, Qi XH (2006) Genetic diversity of traditional chinese mustard crops as revealed by phenotypic differences and RAPD markers. Genet Resour Crop Evol 53:1513-1519. doi:10.1007/s10722-005-7763-3
  9. Han Y, Wessler SR (2010) MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 38:e199. doi:10.1093/nar/gkq862
  10. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229-235. doi.org/10.1093/aob/mci016
  11. Kim H, Yeo SS, Han DY, Park YH (2015) Interspecific transferability of watermelon EST-SSRs assessed by genetic relationship analysis of cucurbitaceous crops. Korean J Hortic Sci Technol 33:93-105. doi:10.7235/hort.2015.14120
  12. Kim HI, Hong CP, Im S, Choi SR, Lim YP (2014) Development of molecular markers and application for breeding in chinese cabbage. Korean J Hortic Sci Technol 32:745-752. doi:10.7235/hort.2014.12203
  13. Koch MA, Dobe C, Olds TM (2003) Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in Northern American Arabis divaricarpa (Brassicaceae). Mol Biol Evol 20:338-350. doi:10.1093/molbev/msg046
  14. Mo YJ, Kim KY, Shin WC, Lee GM, Ko JC, Nam JK, Kim BK, Ko JK, Yu Y, Yang TJ (2012) Characterization of imcrop, a mutator-like MITE family in the rice genome. Genes & Genomics 34:189-198. doi:10.1007/s13258-011-0193-z
  15. Qi XH, Zhang MF, Yang JH (2007) Molecular phylogeny of Chinese vegetable mustard (Brassica juncea ) based on the internal transcribed spacers (ITS) of nuclear ribosomal DNA. Genetic Resources and Crop Evolution 54:709-1716. doi:10.1007/s10722-006-9179-0
  16. Sampath P, Murukarthick J, Izzah NK, Lee J, Choi HI, Shirasawa K, Choi BS, Liu S, Nou IS, Yang TJ (2014) Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea. PloS One 94:e94499. doi:10.1371/journal.pone.0094499
  17. Smapath P, Lee SC, Lee J, Izzah NK, Choi BS, Jin M, Park BS, Yang TJ (2013) Characterization of a new high copy Stowaway family MITE, BRAMI-1 in Brassica genome. BMC plant biol 13:56. doi:10.1186/1471-2229-13-56
  18. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241-6246. doi.org/10.1073/pnas.1117018109
  19. Shirasawa K, Hirakawa H, Tabata S, Hassegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S (2012) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124: 1429-1438. doi:10.1007/s00122-012-1798-6
  20. Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 1. genome evolution of diploid and amphidiploid species. Theor Appl Genet 75:784-794. doi:10.1007/bf00265606
  21. Song KM, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 3. genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet 76:497-506. doi:10.1007/bf00226159
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725-2729. doi:10.1093/molbev/mst197
  23. Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169-179. doi:10.1111/j.1365-313X.2001.00945.x
  24. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds, PCR protocols: a guide to methods and applications. Academic Press, San Diego, Calif, pp 315-322. doi:10.1016/b978-0-12-372180-8.50042-1
  25. Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, et al (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339-1347. doi:10.1105/tpc.105.040535
  26. Yang YW, Lai PY, Tai PY, Ma DP, Li WH (1999) Molecular phylogenetic studies of Brassica, Rorippa Arabidopsis, and allied genera based on the internal transcribed spacer region of 18S-25S rDNA. Mol Phylogenet Evol 13:455-462. doi:10.1006/mpev.1999.0648
  27. Yuan YM, Kupfer P, Doyle JJ (1996) Infrageneric phylogeny of the genus gentiana inferred from nucleotide sequences of internal transcribed spacers of the nuclear ribosomal DNA. Am J Bot 83:641-652. doi:10.2307/2445924
  28. Zhang Q, Arbuckle J, Wessler SR (2000) Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family heartbreaker into genic regions of maize. Proc Natl Acad Sci USA 97:1160-1165. doi:10.1073/