초록
본 연구는 하계육묘 시 Diniconazole 처리농도에 따른 토마토 접목묘의 생육과 묘소질에 미치는 영향을 조사하기 위해 수행되었다. Diniconazole 처리 농도는 0(무처리), 5, 10 및 $20mg{\cdot}L^{-1}$로 하였고, 접목 3일후에 1회 처리하였다. 대목은 무처리구에 비해 $5mg{\cdot}L^{-1}$ 및 $10mg{\cdot}L^{-1}$ 처리구에서 짧았고, 접수는 $20mg{\cdot}L^{-1}$ 처리구에서 유의하게 짧았다. 이에 따라 묘의 초장은 가장 높은 농도인 $20mg{\cdot}L^{-1}$ 처리구에서 유의하게 짧았다. 묘의 엽면적은 무처리구에 비해 모든 처리구에서 적었는데 높은 농도 처리구일수록 그 경향이 뚜렷하였다. 특히, $20mg{\cdot}L^{-1}$처리구에서는 엽과 줄기 모두 유의하게 신장이 억제되었다. 묘의 엽 및 줄기 생체중은 무처구에 비해 $5mg{\cdot}L^{-1}$ 처리구에서, 뿌리 생체중은 모든 처리구에서 유의하게 컸다. 묘의 각 기관별 건물중은 $5mg{\cdot}L^{-1}$ 처리구에서 모두 유의하게 컸지만, $20mg{\cdot}L^{-1}$ 처리구에서는 엽 건물중이 무처리구에 비해 크게 적었다. T/R률은 모든 처리구에서 무처리구보다 낮았다. 상대생장률은 무처리구에 비해 $20mg{\cdot}L^{-1}$ 처리구에서, 엽면적률은 $5mg{\cdot}L^{-1}$ 및 $10mg{\cdot}L^{-1}$ 처리구에서 유의하게 낮았다. 따라서 토마토 접목묘의 하계 육묘 시 도장 억제를 통한 건전한 묘를 생산하고자 diniconazole를 이용할 때에는 $10mg{\cdot}L^{-1}$ 이하의 농도로 하여 사용하는 것이 적합할 것으로 생각된다.
This study was performed to investigate the effect of various concentrations of Diniconazole (DC) on the growth and quality of grafted tomato (Solanum lycopersicum) seedlings cultivated during the summer season. Concentrations of DC were set to 0 (non-treatment), 5, 10 and $20mg{\cdot}L^{-1}$, were treated once 3 days after grafting. Rootstock of the seedlings was shorter in the DC $5mg{\cdot}L^{-1}$ and $10mg{\cdot}L^{-1}$ treatment compared to the non-treatment, and the scions were significantly shorter in the DC $20mg{\cdot}L^{-1}$ treatment. Seedlings were significantly shorter in the DC $20mg{\cdot}L^{-1}$ treatment compared with the non-treatment. Leaf area was lower for seedlings subjected to all treatments than for seedlings in non-treatment group, and reduction was dose dependent. In particular, the DC $20mg{\cdot}L^{-1}$ treatment inhibited both leaf and stem growth. The fresh weighs of leaves and stems of the seedlings treated with DC $5mg{\cdot}L^{-1}$ and the fresh weights of roots subjected to all treatments were significantly greater than those of the non-treatment seedlings. Dry weight per organs of the seedlings treated with DC $5mg{\cdot}L^{-1}$ was significantly greater that of the non-treatment seedlings, but the dry weight of leaves of seedling treated with DC $20mg{\cdot}L^{-1}$ was much less than that of the non-treatment seedlings. The T/R ratio of the seedlings was lower for all treatments than for the non-treatment. The relative growth rate of the seedlings was significantly lower in the DC $20mg{\cdot}L^{-1}$ treatment and, the leaf area rate of seedlings was lower in the DC $5mg{\cdot}L^{-1}$ and $10mg{\cdot}L^{-1}$ treatment than in the non-treatment. Therefore, the optimal concentration of Dinoconazole used to produce a suitable grafted tomato seedling in the summer season is $10mg{\cdot}L^{-1}$ or less.