참고문헌
- 공우석, 1999, "한라산의 수직적 기온 분포와 고산식물의 온도적 범위," 대한지리학회지, 34(4), 385-393.
- 공우석, 2005, "지구온난화에 취약한 지표식물 선정," 한국기상학회지, 41(2-1), 263-273.
- 구경아, 2000, "한반도 상록활엽수의 지리적 분포와 기후요소와의 관계 -내장산 굴거리나무를 중심으로-," 경희대학교 대학원 석사학위논문.
- 국립기상연구소, 2012, IPCC 5차 평가보고서 대응을 위한 전지구 기후변화 보고서 2012 RCP 2.6/4.5/6.0/8.5 따른 기후변화 전망.
- 국립수목원, 2004, 한반도 관속식물 분포도-남해안아구.
- 국립수목원, 2005, 한반도 관속식물 분포도-남부아구(전라도 및 지리산).
- 국립수목원, 2006, 한반도 관속식물 분포도-중.남부아구(충청도).
- 국립수목원, 2007. 한반도 관속식물 분포도-중.남아구(경상북도).
- 국립수목원, 2008, 한반도 관속식물 분포도-중부아구(경기도).
- 국립수목원, 2009, 한반도 관속식물 분포도-중부아구(강원도).
- 국립수목원, 2010a, 한반도 관속식물 분포도-남부아구(경상남도) 및 울릉도아구.
- 국립수목원, 2010b, 한반도 관속식물 분포도-제주도아구.
- 국립수목원, 2011, 한반도 관속식물 분포도-서남해안도서지역.
- 국토교통부 국토지리정보원, 2014, 대한민국 국가지도집.
- 권혁수, 2014, "종분포모형의 불확실성 확인을 위한 앙상블모형 적용," 한국지형공간정보학회지, 22(4), 47-52. https://doi.org/10.7319/kogsis.2014.22.4.047
- 권혁수.류지은.서창완.김지연.임동옥.서민환, 2012, "종분포모형을 이용한 히어리 서식지의 분포 특성 연구," 환경영향평가, 21(5), 735-743. https://doi.org/10.14249/EIA.2012.21.5.735
- 기상청, 2014, 기상연보2014.
- 김종원, 2005, "소나무재선충과 동해안 산불을 통해서 본 우리나라의 소나무, 무엇이 문제인가," 한국생태학회지, 28(2), 113-120.
- 김지연.서창완.권혁수.류지은.김명진, 2012, "전국자연환경조사 자료를 이용한 종분포모형 연구," 환경영향평가, 21(4), 593-607. https://doi.org/10.14249/EIA.2012.21.4.593
- 박종철.양금철.장동호, 2010, "기후변화에 따른 난온대 상록활엽수림대의 이동에 관한 연구," 건국대학교 기후연구, 5(1), 29-41.
- 박현철.이정환.이관규.엄기증, 2015, "구상나무와 분비나무 분포지의 환경 특성 및 기후변화 민감성 평가," 환경영향평가, 24(3), 260-277. https://doi.org/10.14249/eia.2015.24.3.260
- 서민환.신영규.김정현.최태봉.노환춘.김태규.김기대, 2006, 한반도 기후변화 진단지표 생물종 조사, 국립환경과학원,
- 서창완.박유리.최윤수, 2008, "위치자료의 종류에 따른 생물종 분포모형 비교 연구," 한국지형공간정보학회지, 16(4), 59-64.
- 송국만.강영제.현화자, 2014, "한라산 구상나무림의 사면별 식생구조와 치수발생 특성," 한국환경과학회지, 23(1), 39-46.
- 신만석.장래익.서창완.이명우, 2015, "종풍부도와 세분화된 관리지역 비교 연구-보령시를 대상으로," 환경영향평가, 24(1), 35-50. https://doi.org/10.14249/eia.2015.24.1.35
- 윤종학.박찬호.이병윤.오경희, 2011, "기후변화에 따른 한반도 난온대 상록활엽수의 잠재 생육지 변화 예측," 한국환경생태학회지, 25(4), 590-600.
- 이용호.오영주.홍선희.나채선.나영은.김창석.손수인, 2015, "기후변화 시나리오에 의한 외래식물 실망초(conyza bonariensis)의 서식지 분포 예측," 한국기후변화학회지, 6(3), 243-248.
- 이우철.임양재, 2002, 식물지리. 강원대학교 출판부.
- 임종환.신준환, 2005, "지구온난화에 따른 산림식생대 이동과 식물계절 변화," 자연보존, 130, 8-17.
- 환경부, 2000, 국가 기후변화 생물지표 100종.
- Austin, M., 2002, Spatial prediction of species distribution: An interface between ecological theory and statistical modelling, Ecological Modelling, 157(2), 101-118. https://doi.org/10.1016/S0304-3800(02)00205-3
- BOX, E.O., CRUMPACKER, D.W. and HARDIN, E.D., 1993, A climatic model for location of plant species in Florida, USA, Journal of Biogeography, 20, 629-644. https://doi.org/10.2307/2845519
- CRUMPACKER, D.W., BOX, E.O. and HARDIN, E.D., 2001, Implications of climatic warming for conservation of native trees and shrubs in Florida, Conservation Biology, 15(4), 1008-1020. https://doi.org/10.1046/j.1523-1739.2001.0150041008.x
- Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C., & Longino, J. T., 2008, Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics, Science (New York, N.Y.), 322(5899), 258-261. doi:10.1126/science.1162547[doi].
- Diaz-Varela, R. A., Colombo, R., Meroni, M., Calvo-Iglesias, M. S., Buffoni, A., & Tagliaferri, A., 2010, Spatio-temporal analysis of alpine ecotones: A spatial explicit model targeting altitudinal vegetation shifts, Ecological Modelling, 221(4), 621-633. https://doi.org/10.1016/j.ecolmodel.2009.11.010
- Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N. E., Guisan, A., Mang, T., 2012, Extinction debt of high-mountain plants under twenty-first-century climate change, Nature Climate Change, 2(8), 619-622. https://doi.org/10.1038/nclimate1514
- Feeley, K. J., 2012, Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records, Global Change Biology, 18(4), 1335-1341. https://doi.org/10.1111/j.1365-2486.2011.02602.x
- Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., Saatchi, S., 2011, Upslope migration of andean trees, Journal of Biogeography, 38(4), 783-791. https://doi.org/10.1111/j.1365-2699.2010.02444.x
- Freeman, E. A., & Moisen, G., 2008, PresenceAbsence: An R package for presence absence analy-sis, Journal of Statistical Software, 23(11), 1-31.
- Guisan, A., & Zimmermann, N. E., 2000, Predictive habitat distribution models in ecology, Ecological Modelling, 135(2), 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A., 2005, Very high resolution interpolated climate surfaces for global land areas, International Journal of Climatology, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276
- Jimenez-Valverde, A., & Lobo, J. M., 2007, Threshold criteria for conversion of probability of species presence to either-or presence-absence, Acta Oecologica, 31(3), 361-369. https://doi.org/10.1016/j.actao.2007.02.001
- Kearney, M., & Porter, W., 2009, Mechanistic niche modelling: Combining physiological and spatial data to predict species' ranges, Ecology Letters, 12(4), 334-350. https://doi.org/10.1111/j.1461-0248.2008.01277.x
- Kleidon, A., & Mooney, H. A., 2000, A global distribution of biodiversity inferred from climatic constraints: Results from a process-based modelling study, Global Change Biology, 6(5), 507-523. https://doi.org/10.1046/j.1365-2486.2000.00332.x
- Koo, K. A., Kong, W., Nibbelink, N. P., Hopkinson, C. S., & Lee, J. H., 2015, Potential effects of climate change on the distribution of cold-tolerant evergreen broadleaved woody plants in the korean peninsula, PloS One, 10(8), e0134043. https://doi.org/10.1371/journal.pone.0134043
- Morin, X., Augspurger, C., & Chuine, I., 2007, Process-based modeling of specie's distributions: What limits temperature tree species range boundaries, Ecology, 88(9), 2280-2291. https://doi.org/10.1890/06-1591.1
- Nakao, K., Higa, M., Tsuyama, I., Lin, C., Sun, S., Lin, J., Tanaka, N., 2014, Changes in the potential habitats of 10 dominant evergreen broad-leaved tree species in the taiwan-japan archipelago, Plant Ecology, 215(6), 639-650. https://doi.org/10.1007/s11258-014-0329-8
- Nakao, K., Matsui, T., Horikawa, M., Tsuyama, I., & Tanaka, N., 2011, Assessing the impact of land use and climate change on the evergreen broad-leaved species of quercus acuta in japan, Plant Ecology, 212(2), 229-243. https://doi.org/10.1007/s11258-010-9817-7
- Randin, C. F., Engler, R., Normand, S., Zappa, M., Zimmermann, N. E., Pearman, P. B., Guisan, A., 2009, Climate change and plant distribution: Local models predict high-elevation persistence, Global Change Biology, 15(6), 1557-1569. https://doi.org/10.1111/j.1365-2486.2008.01766.x
- Sakai, A., 1975, Freezing resistance of evergreen and deciduous broad-leaf trees in japan with special reference to their distributions. Japanese Journal of Ecology (Japan).
- Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J. Midgley, B., 2013, IPCC, 2013: Climate change 2013: The physical science basis, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.
- Swets, J. A., 1988, Measuring the accuracy of diagnostic systems. Science (New York, N.Y.), 240(4857), 1285-1293. https://doi.org/10.1126/science.3287615
- Thuiller, W., 2003, BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9(10), 1353-1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x
- Uyeki, H., 1941, Northern distribution limit of korean evergreen broadleaved trees. Acta Phytotax.Geobot, 10, 89-93.
- Wood, S., 2006, Generalized additive models: An introduction with R, CRC press.
- Yun, J., Nakao, K., Tsuyama, I., Higa, M., Matsui, T., Park, C., Tanaka, N., 2014, Does future climate change facilitate expansion of evergreen broad-leaved tree species in the human-disturbed landscape of the korean peninsula? Implication for monitoring design of the im-pact assessment, Journal of Forest Research, 19(1), 174-183. https://doi.org/10.1007/s10310-013-0401-6
- Zimmermann, N. E., Jandl, R., Hanewinkel, M., Kunstler, G., Kolling, C., Gasparini, P., Ulmer, U., 2013, Potential future ranges of tree species in the Alps, Management Strategies to Adapt Alpine Space Forests to Climate Change Risks, InTech, 37-48.
- Zweig, M. H., & Campbell, G., 1993, Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39(4), 561-577.