DOI QR코드

DOI QR Code

Application of Image Processing Method to Evaluate Ultimate Strain of Rebar

철근의 한계상태변형률 평가를 위한 이미지 프로세싱의 적용

  • 김성도 (경성대학교 건설환경도시공학부 토목공학전공) ;
  • 정치영 (부산대학교 지진방재연구센터) ;
  • 우태련 (부산대학교 사회환경시스템공학과) ;
  • 정진환 (부산대학교 사회환경시스템공학과 토목공학전공)
  • Received : 2016.02.15
  • Accepted : 2016.04.21
  • Published : 2016.05.01

Abstract

In this study, measurements were conducted by image processing to do an in-depth evaluation of strain of rebar in a uniaxial tension test. The distribution of strain and the necking region were evaluated. The image processing is used to analyze the color information of a colored image, so that the parts consistent with desired targets can be distinguished from the other parts. After this process, the image was converted to a binary one. Centroids of each target region are obtained in the binary images. After repeating such process on the images from starting point to the finishing point of the test, elongation between targets is calculated based on the centroid of each target. The tensile test were conducted on grade 60 #7(D22) and #9(D29) rebars fabricated in accordance with ASTM A615 standards. Strain results from image processing were compared to the results from a conventional strain gauge, in order to see the validity of the image processing. With the image processing, the measuring was possible in not only the initial elastic region but also the necking region of more than 0.5(50%) strain. The image processing can remove the measuring limits as long as the targets can be video recorded. It also can measure strain at various spots because the targets can easily be attached and detached. Thus it is concluded that the image processing helps overcome limits in strain measuring and will be used in various ways.

본 연구에서는 철근의 인장시험에서 변형률에 대한 상세 측정을 위하여 이미지 프로세싱을 이용하고, 변형률 분포와 넥킹구간을 평가하였다. 이미지 프로세싱 방법으로는 기존의 회색조영상을 이용한 방법이 아닌 칼라영상의 색상정보를 분석하여, 원하는 타겟과 가장 일치하는 영역과 그 외의 영역으로 구분하여 이진영상으로 변환하는 방법을 사용하였다. 변환된 이진영상에서 개별 타겟들의 도심점을 산출한 후 각 도심점의 상대변위값을 변형률로 환산하였다. 인장실험은 ASTM A615 기준으로 제작된 grade 60 철근 중 D22와 D29에 대해서 시험을 수행하였다. 이미지 프로세싱을 이용하여 계측된 변형률 결과를 기존 변형률 게이지를 이용하여 계측한 결과와 비교하여, 본 연구에서 사용한 이미지 프로세싱 방법에 대해서 검증하였다. 이미지 프로세싱을 이용하여 초기 탄성구간의 변형률 뿐만 아니라 넥킹구간에서 발생한 0.5(50%) 이상의 변형률도 계측이 가능한 것을 확인하였다. 본 연구결과 이미지 프로세싱을 통하여 기존 변형률 게이지의 계측한계를 극복가능하고, 다양한 지점에서 자유롭게 계측할 수 있음을 알 수 있었다.

Keywords

References

  1. American Society for Testing and Materials International, Standard specification for deformed and plain carbon-steel bars for concrete reinforcement: ASTM A615/A615M-15; 2015.
  2. American Society for Testing and Materials International, Standard test methods and definitions for mechanical testing of steel products: ASTM A370-14, 2014.
  3. Barranger, Y., Doumalin, P., Dupre, J. C., Germaneau, (2012), A. Strain Measurement by Digital Image Correlation: Influence of Two Types of Speckle Patterns Made from Rigid or Deformable Marks. Strain, 48, 357-65. https://doi.org/10.1111/j.1475-1305.2011.00831.x
  4. Choi, H. S., Cheung, J. H., Kim, S. H., Ahn, J. H. (2011), Structural Dynamic Displacement Vision System Sing Digital Image Processing, NDT&E International, 44, 597-608. https://doi.org/10.1016/j.ndteint.2011.06.003
  5. Cintron, R., Saouma, V., (2008), Strain Measurement with the Digital Image Correlation System Vic-2D. Center for Fast Hybrid Testing NEES at CU Boulder.
  6. Germaneau, A., Doumalin, P., Dupre, J. C. (2008), Comparison between X-ray Micro-computed Tomography and Optical Scanning Tomography for Full 3D Strain Measurement by Digital Volume Correlation, NDT&E International, 41, 407-15. https://doi.org/10.1016/j.ndteint.2008.04.001
  7. Ji, Y. F., Chang, C. C. (2008), Nontarget Image-based Technique for Small Cable Vibration Measurement, Journal of Bridge Engineering, 13(1), 34-42.
  8. Kaur, A., and Kranti, B. V. (2012), Comparison between YCbCr Color Space and CIE Lab Color Space for Skin Color Segmentation. International Journal of Applied Information System, 30-36.
  9. Lee, J. J., Shinozuka, M. (2006), Real-time Displacement Measurement of Flexible bridge using Digital Image Processing Techniques. Experimental Mechanics, 46(1), 105-14. https://doi.org/10.1007/s11340-006-6124-2
  10. Smith, R., Antonova, D. and Lee, D. (2009), Adapting the Tesseract Open Source OCR Engine for Multilingual OCR. Proceedings of the International Workshop on Multilingual OCR 2009, Article No. 1.
  11. Wahbeh, AMazen, Caffrey John P, Masri Sami F. (2003), A Vision-based Approach for the Direct Measurement of Displacements in Vibrating Systems, Smart Materials and Structures, 12(5), 785-94. https://doi.org/10.1088/0964-1726/12/5/016

Cited by

  1. 색상에 기반한 영상분석기법을 이용한 콘크리트 거더의 휨 거동 분석 vol.24, pp.4, 2016, https://doi.org/10.11112/jksmi.2020.24.4.48