참고문헌
- Ait Atmane, H., Tounsi, A. and Bernard, F. (2015), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater., 1-14.
- Ait Yahia, S., Ait Atmane, H., Sid Ahmed Houari, M. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2010), "Refined and advanced models for multilayered plates and shells embedding functionally graded material layers", Mech. Adv. Mater. Struct., 17(8), 603-621. https://doi.org/10.1080/15376494.2010.517730
- Cinefra, M., Carrera, E., Della Croce, L. and Chinosi, C. (2012), "Refined shell elements for the analysis of functionally graded structures", Compos. Struct., 94(2), 415-422. https://doi.org/10.1016/j.compstruct.2011.08.006
- Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., Int. J., 9(3), 361-372. https://doi.org/10.12989/gae.2015.9.3.361
- Hassaine Daouadji, T., Tounsi, A., Hadji, L., Hadj, H.A. and El Abbes, A.B. (2012), "A theoretical analysis for static and dynamic behavior of functionally graded plates", Mater. Phys. Mech., 14, 110-128.
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behavior of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
- Kiani, Y., Akbarzadeh, A.H., Chen, Z.T. and Eslami, M.R. (2011), "Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation", Compos. Struct., 94(8), 2474-2484. https://doi.org/10.1016/j.compstruct.2012.02.028
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sic., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
- Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2011), "Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions", Mech. Res. Commun., 38(5), 368-371. https://doi.org/10.1016/j.mechrescom.2011.04.011
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012a), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Soares, C.M.M. and Jorge, R.M.N. (2012b), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B, 43(2), 711-725.
- Ravikiran, K., Kashif, A. and Ganesan, G. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32 (12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
- Ravikiran, K., Kashif, A. and Ganesan, N. (2013), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Method. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
- Sepahi, O., Forouzan, M.R. and Malekzadeh, P. (2008), "Large deflection analysis of thermo-mechanical loaded annular FGM plates on nonlinear elastic foundation via DQM", Compos. Struct., 92(10), 2369-2378. https://doi.org/10.1016/j.compstruct.2010.03.011
- Sepahi, O., Forouzan, M.R. and Malekzadeh, P. (2010), "Large deflection analysis of thermo-mechanical loaded annular FGM plates on nonlinear elastic foundation via DQM", Compos. Struct., 92(10), 2369-2378. https://doi.org/10.1016/j.compstruct.2010.03.011
- Sid Ahmed Houari, M., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
- Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049
- Werner, H. (1999), "A three-dimensional solution for rectangular plate bending free of transversal normal stresses", Numer..Method..Eng., 15(4), 295-302. https://doi.org/10.1002/(SICI)1099-0887(199904)15:4<295::AID-CNM245>3.0.CO;2-S
-
Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of
$ZrO_2$ -NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2
피인용 문헌
- On vibrations of porous nanotubes vol.125, 2018, https://doi.org/10.1016/j.ijengsci.2017.12.009
- Vibration analysis of non-uniform porous beams with functionally graded porosity distribution pp.2041-3076, 2018, https://doi.org/10.1177/1464420718780902
- Non-linear study of mode II delamination fracture in functionally graded beams vol.23, pp.3, 2016, https://doi.org/10.12989/scs.2017.23.3.263
- A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
- A simple analytical approach for thermal buckling of thick functionally graded sandwich plates vol.63, pp.5, 2016, https://doi.org/10.12989/sem.2017.63.5.585
- A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
- Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.369
- A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
- A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams vol.64, pp.2, 2016, https://doi.org/10.12989/sem.2017.64.2.145
- Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
- An analytical solution for bending and vibration responses of functionally graded beams with porosities vol.25, pp.4, 2016, https://doi.org/10.12989/was.2017.25.4.329
- An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
- A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
- Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.281
- A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
- An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
- An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.735
- Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2016, https://doi.org/10.12989/gae.2018.14.6.519
- Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2016, https://doi.org/10.12989/amr.2018.7.2.119
- Geometrically nonlinear analysis of functionally graded porous beams vol.27, pp.1, 2016, https://doi.org/10.12989/was.2018.27.1.059
- An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions vol.16, pp.1, 2016, https://doi.org/10.12989/gae.2018.16.1.001
- Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate vol.16, pp.5, 2016, https://doi.org/10.12989/eas.2019.16.5.601
- Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.535
- Vibration analysis of nonlocal porous nanobeams made of functionally graded material vol.7, pp.5, 2019, https://doi.org/10.12989/anr.2019.7.5.351
- Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations vol.72, pp.1, 2016, https://doi.org/10.12989/sem.2019.72.1.061
- Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT vol.24, pp.4, 2016, https://doi.org/10.12989/cac.2019.24.4.347
- Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory vol.24, pp.4, 2019, https://doi.org/10.12989/cac.2019.24.4.369
- Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate vol.72, pp.3, 2016, https://doi.org/10.12989/sem.2019.72.3.293
- On the stability of isotropic and composite thick plates vol.33, pp.4, 2019, https://doi.org/10.12989/scs.2019.33.4.551
- Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study vol.72, pp.4, 2019, https://doi.org/10.12989/sem.2019.72.4.409
- Free vibration analysis of angle-ply laminated composite and soft core sandwich plates vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.663
- Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2016, https://doi.org/10.12989/scs.2019.33.5.699
- Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory vol.24, pp.6, 2019, https://doi.org/10.12989/cac.2019.24.6.489
- A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation vol.34, pp.4, 2016, https://doi.org/10.12989/scs.2020.34.4.511
- A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.197
- Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
- An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.061
- Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive vol.9, pp.2, 2016, https://doi.org/10.12989/amr.2020.9.2.133
- A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells vol.26, pp.2, 2020, https://doi.org/10.12989/cac.2020.26.2.185
- Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model vol.26, pp.2, 2020, https://doi.org/10.12989/sss.2020.26.2.253
- Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM vol.75, pp.5, 2020, https://doi.org/10.12989/sem.2020.75.5.633
- Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate vol.9, pp.5, 2016, https://doi.org/10.12989/csm.2020.9.5.473
- Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2016, https://doi.org/10.12989/amr.2020.9.4.265
- Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2016, https://doi.org/10.12989/csm.2020.9.6.499
- Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
- Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
- Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2016, https://doi.org/10.12989/sem.2021.77.2.217
- Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2016, https://doi.org/10.12989/csm.2021.10.1.061
- Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations vol.77, pp.6, 2016, https://doi.org/10.12989/sem.2021.77.6.797
- Limit Elastic Analysis of Functionally Graded Rotating Disks Under Thermo-Mechanical Loading vol.13, pp.3, 2016, https://doi.org/10.1142/s1758825121500332