DOI QR코드

DOI QR Code

Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [θm/90n]s composite laminates

  • Khodjet-Kesb, M. (Laboratoire des sciences aeronautiques, Institut d'aeronautique et des etudes spatiales, Universite de Blida1) ;
  • Adda bedia, E.A. (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes) ;
  • Benkhedda, A. (Laboratoire des sciences aeronautiques, Institut d'aeronautique et des etudes spatiales, Universite de Blida1) ;
  • Boukert, B. (Laboratoire des sciences aeronautiques, Institut d'aeronautique et des etudes spatiales, Universite de Blida1)
  • Received : 2015.05.22
  • Accepted : 2016.02.29
  • Published : 2016.05.20

Abstract

The Poisson ratio reduction of symmetric hygrothermal aged $[{\theta}_m/90_n]_s$ composite laminates containing a transverse cracking in mid-layer is predicted by using a modified shear-lag model. Good agreement is obtained by comparing the prediction models and experimental data published by Joffe et al. (2001). The material properties of the composite are affected by the variation of temperature and transient moisture concentration distribution in desorption case, and are based on a micro-mechanical model of laminates. The transient and non-uniform moisture concentration distribution give rise to the transient Poisson ratio reduction. The obtained results represent well the dependence of the Poisson ratio degradation on the cracks density, fibre orientation angle of the outer layers and transient environmental conditions. Through the presented study, we hope to contribute to the understanding of the hygrothermal behaviour of cracked composite laminate.

Keywords

References

  1. Adda bedia, E.A., Bouazza, M., Tounsi, A., Benzair, A. and Maachou, M. (2008), "Prediction of stiffness degradation in hygrothermal aged $[{\theta}_m/90_n]_s$ composite laminates with transverse cracking", J. Mater. Proc., 199(1-3), 199-205. https://doi.org/10.1016/j.jmatprotec.2007.08.002
  2. Akula, V.M.K. and Garnich, M.R. (2012), "Effective ply and constituent elastic properties for cracked laminates", Compos.: Part B, 43(5), 2143-2151. https://doi.org/10.1016/j.compositesb.2012.02.034
  3. Amara, K.H., Tounsi, A., Megueni, A. and Addabedia, E.A. (2006), "Effect of transverse cracks on the mechanical properties of angle-ply composites laminates", Theor. Appl. Fract. Mech., 45(1), 72-78. https://doi.org/10.1016/j.tafmec.2005.11.003
  4. Amara, K.H., Bouazza, M., Antar, K. and Megueni, A. (2014), "Evaluation of the stiffness of composite materials with hygrothermal conditions", Leona. J. Sci., 25, 57-64.
  5. Barbero, E.J. and Cosso, F.A. (2014), "Determination of material parameters for discrete damage mechanics analysis of carbon-epoxy laminates", Compos. Part B, 56, 638-646. https://doi.org/10.1016/j.compositesb.2013.08.084
  6. Benkhedda, A., Tounsi, A. and Adda bedia, E.A. (2008), "Effect of temperature and humidity on transient hygrothermal stress during moisture desorption in laminated composite plates", Compos. Struct., 82(4), 629-635. https://doi.org/10.1016/j.compstruct.2007.04.013
  7. Berthelot, J.M., Leblonb, P., El Mahi, A. and Le Core, J.F. (1996), "Transverse cracking of cross ply laminates: Part I. Analysis", Compos. Part A: Appl. Sci. Manuf., 27(10), 989-1001. https://doi.org/10.1016/1359-835X(96)80002-A
  8. Bouazza, M., Tounsi, A., Benzair, A. and Adda-bedia, E.A. (2007), "Effect of transverse cracking on stiffness reduction of hygrothermal aged cross-ply laminates", Mater. Des., 28(0), 1116-1123. https://doi.org/10.1016/j.matdes.2006.02.003
  9. Chamis, C.C. (1984), "Simplified composite micromechanics equations of hygral, thermal, and mechanical properties", SAMPE Quart, 15, 14-23.
  10. Farrokhabadi, A., Hosseini-Toudeshky, H. and Mohammadi, B. (2011), "A generalised micromechanical approach for the analysis of transverse crack induced delamination in composite laminates", Compos. Struct., 93(2), 443-455. https://doi.org/10.1016/j.compstruct.2010.08.036
  11. Hajikazemi, M. and Sadr, M.H. (2014), "Stiffness reduction of cracked general symmetric laminates using a variational approach", Inter. J. Sol. Struct., 51(7-8), 1483-1493. https://doi.org/10.1016/j.ijsolstr.2013.12.040
  12. Hallett, S.R., Jiang, W.G., Khan, B. and Wisnom, R. (2008), "Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens", Compos. Sci. Tech., 68(1), 80-89. https://doi.org/10.1016/j.compscitech.2007.05.038
  13. Halpin, J.C. and Tsai, S.W. (1968), "Effects of environmental factors on composite materials", Air Force Materials Lab (AFML-TR).
  14. Hashin, Z. (1985), "Analysis of cracked laminates: A variational approach", Mech. Mater., 4(2), 121-136. https://doi.org/10.1016/0167-6636(85)90011-0
  15. Hashin, Z. (1986), "Analysis of stiffness reduction of cracked cross ply laminates", Eng. Frac. Mech., 25(5-6), 771-778. https://doi.org/10.1016/0013-7944(86)90040-8
  16. Huang, Z.Q., Zhou, J.C. and Liew, K.M. (2014), "Variational analysis of angle-ply laminates with matrix cracks", Inter. J. Sol. Struct., 51(21-22), 3669-3678. https://doi.org/10.1016/j.ijsolstr.2014.06.028
  17. Jalalvand, M., Hosseini-Toudeshky, H. and Mohammadi, B. (2013), "Homogenization of diffuse delamination in composite laminates", Compos. Struct., 100, 113-120. https://doi.org/10.1016/j.compstruct.2012.12.022
  18. Joffe, R., Krasnikovs, A. and Varna, J. (2001), "COD-based simulation of transverse cracking and stiffness reduction in $[S/90_n]_s$ laminates", Compos. Sci. Tech., 61(5), 637-656. https://doi.org/10.1016/S0266-3538(00)00172-X
  19. Katerelos, D.T.G., Krasnikovs, A. and Varna, J. (2015), "Variational models for shear modulus of symmetric and balanced laminates with cracks in $90^{\circ}$-layer", Inter. J. Sol. Struct., 71, 169-179. https://doi.org/10.1016/j.ijsolstr.2015.06.017
  20. Kashtalyan, M. and Soutis, C. (2000), "Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting", Compos. Part A-App. Sci., 31(4), 335-351. https://doi.org/10.1016/S1359-835X(99)00077-9
  21. Khodjet-Kesba, M., Adda Bedia, E.A., Benkhedda, A. and Boukert, B. (2015), "Hygrothermal effect in $[{\theta}_m/90_n]_s$ cracked composite laminates-desorption case", Pro. Eng., 114, 110-117. https://doi.org/10.1016/j.proeng.2015.08.048
  22. Li, S. and Hafeez, F. (2009), "Variation-based cracked laminate analysis revisited and fundamentally extended", Inter. J. Sol. Struct., 46(20), 3505-3515. https://doi.org/10.1016/j.ijsolstr.2009.03.031
  23. Li, S., Singh, C.V. and Talreja, R. (2009), "A representative volume element based on translational symmetries for FE analysis of cracked laminates with two arrays of cracks", Inter. J. Sol. Struct., 46(7-8), 1793-1804. https://doi.org/10.1016/j.ijsolstr.2009.01.009
  24. Lundmark, P. and Varna, J. (2011), "Stiffness reduction in laminates at high intralaminar crack density: Effect of crack interaction", Inter. J. Dam. Mech., 20(2), 279-297. https://doi.org/10.1177/1056789509351840
  25. Maurice, F.A. (2001), "Engineering composite materials", EMC471; The Pennsylvania State University.
  26. McCartney, L.N. (1992), "Theory of stress transfer in a 0-90-0 cross ply laminate containing a parallel array of transverse cracks", J. Mech. Phys. Sol., 40(1), 27-68. https://doi.org/10.1016/0022-5096(92)90226-R
  27. Nairn, J.A. and Mendels, D.A. (2001), "On the use of planar shear-lag methods for stress transfer analysis of multilayered composites", Mech. Mater., 33(6), 335-362. https://doi.org/10.1016/S0167-6636(01)00056-4
  28. Rezoug, T., Benkhedda, A., Khodjet-Kesba, M. and Adda bedia, E.A. (2011), "Analysis of the composite patches cracked and aged in hygrothermal conditions", Mech. Indus., 12(5), 395-398.
  29. Selvarathinam, A.S. and Weitsman, Y.J. (1999), "A shear lag analysis of transverse cracking and delamination in cross-ply carbon fibre/epoxy composites under-dry, saturated and immersed fatigue conditions", Compos. Sci. Tech., 59(14), 2115-2123. https://doi.org/10.1016/S0266-3538(99)00069-X
  30. Shen, C.H. and Springer, G.S. (1981), "Moisture absorption and desorption of composite materials", (Environmental effects on composites materials Ed.), G.S. Springer, Technomic Publishing Co., Lancaster, PA, USA.
  31. Singh, C.V. and Talreja, R. (2009), "A synergistic damage mechanics approach for composite laminates with matrix cracks in multiple orientations", Mech. Mater., 41(8), 954-968. https://doi.org/10.1016/j.mechmat.2009.02.008
  32. Staab, G. (1999), Laminar Composite, Butterworth-Heinemann, London, UK.
  33. Steif, P.S. (1984), "Transverse play crack growth and associated stiffness reduction during the fatigue of a simple cross play laminate", Report CUED/C/MATS/TR105; Cambridge University.
  34. Tay, T.E. and Lim, E.H. (1996), "Analysis of composite laminates with transverse cracks", Compos. Struct., 34(4), 419-426. https://doi.org/10.1016/0263-8223(96)00010-4
  35. Tounsi, A., Adda bedia, E.L. and Benachour, A. (2005), "A new computational method for prediction of transient hygroscopic stresses during moisture desorption in laminated composite plates with different degrees of anisotropy", Int. J. Thermo. Compos. Mater., 18(1), 37-58. https://doi.org/10.1177/0892705705041156
  36. Tounsi, A., Amara, K.H., Benzair, A. and Megueni, A. (2006), "On the transverse cracking and stiffness degradation of aged angle-ply laminates", Mater. Lett., 60(21-22), 2561-2564. https://doi.org/10.1016/j.matlet.2006.01.037
  37. Tsai, S.W. (1988), Composites Design, Think Composites, Dayton, Paris, Tokyo.
  38. Van der Meer, F.P and Sluys, L.J. (2013), "A numerical investigation of the size effect in the transverse crack tension test for mode II delamination", Compos. Part A: Appl. Sci. Manuf., 54, 145-152. https://doi.org/10.1016/j.compositesa.2013.07.013
  39. Vergnaud, J.M. (1992), Drying of Polymeric and Solid Materials: Modelling and Industrial Applications, Springer-Verlag, London, UK.
  40. Vingradov, V. and Hashin, Z. (2010), "Variational analysis of cracked angle-ply laminates", Compos. Sci. Tech., 70(4), 638-646. https://doi.org/10.1016/j.compscitech.2009.12.018
  41. Yokozeki, T. and Aoki, T. (2005), "Overall thermoelastic properties of symmetric laminates containing obliquely crossed matrix cracks", Compos. Sci. Tech., 65(11-12), 1647-1654. https://doi.org/10.1016/j.compscitech.2005.02.016
  42. Zhang, H. and Minnetyan, L. (2006), "Variational analysis of transverse cracking and local delamination in $[{\theta}_m/90_n]_s$ lamiantes", Int. J. Sol. Struct., 43(22-23), 7061-7081. https://doi.org/10.1016/j.ijsolstr.2006.03.004
  43. Zubillaga, L., Turon, A., Renart, J., Coasta, J. and Linde, P. (2015), "An experimental study on matrix crack induced delamination in composite laminates", Compos. Struct., 127, 10-17. https://doi.org/10.1016/j.compstruct.2015.02.077

Cited by

  1. Moisture absorption effect on the stress distribution of the cross-ply laminates with transverse matrix cracks vol.5, 2017, https://doi.org/10.1016/j.prostr.2017.07.131
  2. On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions vol.67, pp.2, 2016, https://doi.org/10.12989/sem.2018.67.2.165