DOI QR코드

DOI QR Code

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M. (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Shahedi, S. (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • 투고 : 2015.11.22
  • 심사 : 2016.02.26
  • 발행 : 2016.05.20

초록

In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.

키워드

과제정보

연구 과제 주관 기관 : University of Kashan

참고문헌

  1. Akgoz, B. and Civalek, O. (2011), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49(11), 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009
  2. Akgoz, B. and Civalek, O. (2012), "Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory", Arch. Appl. Mech., 82(3), 423-443. https://doi.org/10.1007/s00419-011-0565-5
  3. Akgoz, B. and Civalek, O. (2013a), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta. Mech., 224(9), 1-17. https://doi.org/10.1007/s00707-012-0724-y
  4. Akgoz, B. and Civalek, O. (2013b), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004
  5. Alibeigloo, A. and Liew, K.M. (2014), "Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity", Compos. Struct., 113, 23-30. https://doi.org/10.1016/j.compstruct.2014.03.004
  6. Allen, H.G. (1969), Analysis and Design of Structural Sandwich Panels, Pergamon Press, London, UK
  7. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
  8. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2013), "Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory", Compos. Struct., 100, 385-397. https://doi.org/10.1016/j.compstruct.2012.12.048
  9. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  10. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  11. Bui, T.Q., Khosravifard, A., Zhang, C., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041
  12. Chehel Amirani, M., Khalili, S.M.R. and Nemati, N. (2009), "Free vibration analysis of sandwich beam with FG core using the element free Galerkin method", Compos. Struct., 90(3), 373-379. https://doi.org/10.1016/j.compstruct.2009.03.023
  13. Damanpack, A.R. and Khalili, S.M.R. (2012), "High-order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method", Compos. Struct, 94(5), 1503-1514. https://doi.org/10.1016/j.compstruct.2011.08.023
  14. Dariushi, S. and Sadighi, M. (2013), "A new nonlinear high order theory for sandwich beams: An analytical and experimental investigation", Compos. Struct., 108, 779-788.
  15. Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids., 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
  16. Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2014a), "Optimization of fiber distribution in fiber reinforced composite by using NURBS functions", Comput. Mater. Sci., 83(15), 463-473. https://doi.org/10.1016/j.commatsci.2013.11.032
  17. Ghasemi, H., Rafiee, R., Zhuang, X., Muthu, J., Rabczuk, T. (2014b), "Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multiscale modeling", Comput. Mater. Science, 85, 295-305. https://doi.org/10.1016/j.commatsci.2014.01.020
  18. Ghasemi, H., Kerfriden, P., Bordas, S.P.A., Muthu, J., Zi, G. and Rabczuk, T. (2014c), "Interfacial shear stress optimization in sandwich beams with polymeric core using non-uniform distribution of reinforcing ingredients", Compos. Struct., 120, 221-230.
  19. Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2015), "Optimal fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach", Struct. Multidisc. Optim., 51(1), 99-112. https://doi.org/10.1007/s00158-014-1114-y
  20. Ghorbanpour Arani, A. and Amir, S. (2013), "Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory", Physica B, 419, 1-6. https://doi.org/10.1016/j.physb.2013.03.010
  21. Ghorbanpour Arani, A., Haghparast, E., Heidari Rarani, M. and Khoddami Maraghi, Z. (2015), "Strain gradient shell model for nonlinear vibration analysis of visco-elastically coupled Boron Nitride nano-tube reinforced composite micro-tubes conveying viscous fluid", Comput. Mater. Sci., 96, 448-458. https://doi.org/10.1016/j.commatsci.2014.06.013
  22. Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Comput. Meth. Appl. Mech. Eng., 193, 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025
  23. Grygorowicz, M., Magnucki, K. and Malinowski, M. (2015), "Elastic buckling of a sandwich beam with variable mechanical properties of the core", Thin-Walled Struct., 87, 127-132. https://doi.org/10.1016/j.tws.2014.11.014
  24. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
  25. Jedari Salami, S., Sadighi, M. and Shakeri, M. (2015), "Improved High order analysis of sandwich beams by considering a bilinear elasto-plastic behavior of core: An analytical and experimental investigation", Int. J. Mech. Sci., 93, 270-289. https://doi.org/10.1016/j.ijmecsci.2015.02.004
  26. Kahrobaiyan, M.H., Rahaeifard, M., Tajalli, S.A. and Ahmadian, MT. (2012), "A strain gradient functionally graded Euler-Bernoulli beam formulation", Int. J. Eng. Sci., 52, 65-76. https://doi.org/10.1016/j.ijengsci.2011.11.010
  27. Kong, S., Zhou, S., Nie, Z. and Wang, K. (2009), "Static and dynamic analysis of microbeams based on strain gradient elasticity theory", Int. J. Eng. Sci., 47(4), 487-498. https://doi.org/10.1016/j.ijengsci.2008.08.008
  28. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  29. Lanc, D., Vo, T.P., Turkalj, G. and Lee, J. (2015), "Buckling analysis of thin-walled functionally graded sandwich box beams", Thin-Wall. Struct., 86, 148-156. https://doi.org/10.1016/j.tws.2014.10.006
  30. Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012
  31. Liang, X., Hu, S. and Shen, S. (2014), "A new Bernoulli-Euler beam model based on a simplified strain gradient elasticity theory and its applications", Compos. Struct., 111, 317-323. https://doi.org/10.1016/j.compstruct.2014.01.019
  32. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
  33. Mohammadimehr, M., Saidi, A.R., Ghorbanpour Arani, A., Arefmanesh, A. and Han, Q. (2010), "Torsional buckling of a DWCNT embedded on winkler and pasternak foundations using nonlocal theory", J. Mech. Sci. Technol., 24(6), 1289-1299. https://doi.org/10.1007/s12206-010-0331-6
  34. Mohammadimehr, M., Monajemi, A.A. and Moradi, M. (2015a), "Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM", J. Mech. Sci. Technol., 29(6), 2297-2305. https://doi.org/10.1007/s12206-015-0522-2
  35. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015b), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077
  36. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016a), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., Int. J., 20(3), 513-543. https://doi.org/10.12989/scs.2016.20.3.513
  37. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016b), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B, 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007
  38. Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016c), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermo-mechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055
  39. Nanthakumar, S., Valizadeh, N., Park, H.S. and Rabczuk, T. (2015), "Shape and topology optimization of nanostructures using a coupled XFEM/level set method", Comput. Mech., 56(1), 97-112. https://doi.org/10.1007/s00466-015-1159-9
  40. Plantema, F.J. (1966), Sandwich Construction: The Bending and Buckling of Sandwich Beams, Plates and Shells, John Wiley and Sons, New York, NY, USA.
  41. Rahmani, O., Khalili, S.M.R., Malekzadeh, K. and Hadavinia, H. (2009), "Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core", Compos. Struct., 91(2), 229-235. https://doi.org/10.1016/j.compstruct.2009.05.007
  42. Reissner, E. (1948), "Finite deflections of sandwich plates", J. Aeronaut. Sci., 15(7), 435-440. https://doi.org/10.2514/8.11610
  43. Sahmani, S. Bahrami, M. and Ansari, R. (2014), "Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory", Compos. Struct., 110, 219-230. https://doi.org/10.1016/j.compstruct.2013.12.004
  44. Salehi-Khojin, A. and Jalili, N. (2008), "Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings", Compos. Sci. Technol., 68(6), 1489-1501. https://doi.org/10.1016/j.compscitech.2007.10.024
  45. Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer Publication, New York, NY, USA.
  46. Shu, C. and Du, H. (1997), "Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates", J. Sound Vib., 34(7), 819-835.
  47. Taibi, F.Z., Benyoucef, S., Tounsi, A., Bouiadjra, R.B., Bedia, A.A. and Mahmoud, S. (2015), "A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 17, 99-129. https://doi.org/10.1177/1099636214554904
  48. Tajalli, S.A., Rahaeifard, M., Kahrobaiyan, M.H., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T. (2013), "Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory", Compos. Struct., 102, 72-80. https://doi.org/10.1016/j.compstruct.2013.03.001
  49. Vinson, J.R. (1999), The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic Publishing Co. Inc., Lancaster, England.
  50. Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029
  51. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006
  52. Wang, Z.X. and Shen, H.S. (2011), "Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations", Compos. Struct., 93(10), 2521-2532. https://doi.org/10.1016/j.compstruct.2011.04.014
  53. Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotubereinforced composite face sheets", Compos. Part B, 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
  54. Wang, Y. and Wang, X. (2014), "Static analysis of higher order sandwich beams by weak form quadrature element method", Compos. Struct., 116, 841-848. https://doi.org/10.1016/j.compstruct.2014.06.015
  55. Wang, B., Zhao, J. and Zhou, S. (2010), "A microscale Timoshenko beam model based on strain gradient elasticity theory", Eur. J. Mech. A-Solid, 29(4), 591-599. https://doi.org/10.1016/j.euromechsol.2009.12.005
  56. Yang, F., Chong, A.C.M. and Lam, D.C.C. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  57. Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", Compos. Struct., 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016
  58. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pressure Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
  59. Zenkert, D. (1995), An Introduction to Sandwich Construction, Chameleon Press Ltd., London, UK.
  60. Zhang, C.L. and Shen, H.S. (2006), "Temperature-dependent elastic properties of single-walled carbon nanotubes: prediction from molecular dynamics simulation", Appl. Phys. Lett., 89(8), 081904. https://doi.org/10.1063/1.2336622
  61. Zhang, B., He, Y., Liu, D., Gan, Z. and Shen, L. (2014), "Non-classical Timoshenko beam element based on the strain gradient elasticity theory", Finite Elem. Anal. Des., 79, 22-39. https://doi.org/10.1016/j.finel.2013.10.004

피인용 문헌

  1. Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings 2017, https://doi.org/10.1177/1077546317706887
  2. High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM vol.108, 2017, https://doi.org/10.1016/j.compositesb.2016.09.040
  3. Nonlinear high-order dynamic stability of AL-foam flexible cored sandwich beam with variable mechanical properties and carbon nanotubes-reinforced composite face sheets in thermal environment 2020, https://doi.org/10.1177/1099636217738908
  4. Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method vol.27, pp.1, 2016, https://doi.org/10.12989/scs.2018.27.1.035
  5. Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions vol.28, pp.2, 2018, https://doi.org/10.12989/scs.2018.28.2.149
  6. Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite vol.29, pp.3, 2018, https://doi.org/10.12989/scs.2018.29.3.405
  7. Analytical determination of shear correction factor for Timoshenko beam model vol.29, pp.4, 2016, https://doi.org/10.12989/scs.2018.29.4.483
  8. Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings vol.33, pp.1, 2016, https://doi.org/10.12989/scs.2019.33.1.093
  9. Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations vol.33, pp.4, 2016, https://doi.org/10.12989/scs.2019.33.4.509
  10. Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments vol.48, pp.5, 2016, https://doi.org/10.1080/15397734.2019.1646661
  11. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2016, https://doi.org/10.12989/sem.2021.77.2.217
  12. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2016, https://doi.org/10.12989/amr.2021.10.3.169
  13. Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets vol.28, pp.3, 2016, https://doi.org/10.12989/cac.2021.28.3.259