Acknowledgement
Supported by : University of Kashan
References
- Akgoz, B. and Civalek, O. (2011), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49(11), 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009
- Akgoz, B. and Civalek, O. (2012), "Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory", Arch. Appl. Mech., 82(3), 423-443. https://doi.org/10.1007/s00419-011-0565-5
- Akgoz, B. and Civalek, O. (2013a), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta. Mech., 224(9), 1-17. https://doi.org/10.1007/s00707-012-0724-y
- Akgoz, B. and Civalek, O. (2013b), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004
- Alibeigloo, A. and Liew, K.M. (2014), "Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity", Compos. Struct., 113, 23-30. https://doi.org/10.1016/j.compstruct.2014.03.004
- Allen, H.G. (1969), Analysis and Design of Structural Sandwich Panels, Pergamon Press, London, UK
- Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
- Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2013), "Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory", Compos. Struct., 100, 385-397. https://doi.org/10.1016/j.compstruct.2012.12.048
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
- Bui, T.Q., Khosravifard, A., Zhang, C., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041
- Chehel Amirani, M., Khalili, S.M.R. and Nemati, N. (2009), "Free vibration analysis of sandwich beam with FG core using the element free Galerkin method", Compos. Struct., 90(3), 373-379. https://doi.org/10.1016/j.compstruct.2009.03.023
- Damanpack, A.R. and Khalili, S.M.R. (2012), "High-order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method", Compos. Struct, 94(5), 1503-1514. https://doi.org/10.1016/j.compstruct.2011.08.023
- Dariushi, S. and Sadighi, M. (2013), "A new nonlinear high order theory for sandwich beams: An analytical and experimental investigation", Compos. Struct., 108, 779-788.
- Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids., 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
- Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2014a), "Optimization of fiber distribution in fiber reinforced composite by using NURBS functions", Comput. Mater. Sci., 83(15), 463-473. https://doi.org/10.1016/j.commatsci.2013.11.032
- Ghasemi, H., Rafiee, R., Zhuang, X., Muthu, J., Rabczuk, T. (2014b), "Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multiscale modeling", Comput. Mater. Science, 85, 295-305. https://doi.org/10.1016/j.commatsci.2014.01.020
- Ghasemi, H., Kerfriden, P., Bordas, S.P.A., Muthu, J., Zi, G. and Rabczuk, T. (2014c), "Interfacial shear stress optimization in sandwich beams with polymeric core using non-uniform distribution of reinforcing ingredients", Compos. Struct., 120, 221-230.
- Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2015), "Optimal fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach", Struct. Multidisc. Optim., 51(1), 99-112. https://doi.org/10.1007/s00158-014-1114-y
- Ghorbanpour Arani, A. and Amir, S. (2013), "Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory", Physica B, 419, 1-6. https://doi.org/10.1016/j.physb.2013.03.010
- Ghorbanpour Arani, A., Haghparast, E., Heidari Rarani, M. and Khoddami Maraghi, Z. (2015), "Strain gradient shell model for nonlinear vibration analysis of visco-elastically coupled Boron Nitride nano-tube reinforced composite micro-tubes conveying viscous fluid", Comput. Mater. Sci., 96, 448-458. https://doi.org/10.1016/j.commatsci.2014.06.013
- Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Comput. Meth. Appl. Mech. Eng., 193, 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025
- Grygorowicz, M., Magnucki, K. and Malinowski, M. (2015), "Elastic buckling of a sandwich beam with variable mechanical properties of the core", Thin-Walled Struct., 87, 127-132. https://doi.org/10.1016/j.tws.2014.11.014
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
- Jedari Salami, S., Sadighi, M. and Shakeri, M. (2015), "Improved High order analysis of sandwich beams by considering a bilinear elasto-plastic behavior of core: An analytical and experimental investigation", Int. J. Mech. Sci., 93, 270-289. https://doi.org/10.1016/j.ijmecsci.2015.02.004
- Kahrobaiyan, M.H., Rahaeifard, M., Tajalli, S.A. and Ahmadian, MT. (2012), "A strain gradient functionally graded Euler-Bernoulli beam formulation", Int. J. Eng. Sci., 52, 65-76. https://doi.org/10.1016/j.ijengsci.2011.11.010
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2009), "Static and dynamic analysis of microbeams based on strain gradient elasticity theory", Int. J. Eng. Sci., 47(4), 487-498. https://doi.org/10.1016/j.ijengsci.2008.08.008
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lanc, D., Vo, T.P., Turkalj, G. and Lee, J. (2015), "Buckling analysis of thin-walled functionally graded sandwich box beams", Thin-Wall. Struct., 86, 148-156. https://doi.org/10.1016/j.tws.2014.10.006
- Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012
- Liang, X., Hu, S. and Shen, S. (2014), "A new Bernoulli-Euler beam model based on a simplified strain gradient elasticity theory and its applications", Compos. Struct., 111, 317-323. https://doi.org/10.1016/j.compstruct.2014.01.019
- Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
- Mohammadimehr, M., Saidi, A.R., Ghorbanpour Arani, A., Arefmanesh, A. and Han, Q. (2010), "Torsional buckling of a DWCNT embedded on winkler and pasternak foundations using nonlocal theory", J. Mech. Sci. Technol., 24(6), 1289-1299. https://doi.org/10.1007/s12206-010-0331-6
- Mohammadimehr, M., Monajemi, A.A. and Moradi, M. (2015a), "Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM", J. Mech. Sci. Technol., 29(6), 2297-2305. https://doi.org/10.1007/s12206-015-0522-2
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015b), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077
- Mohammadimehr, M., Rostami, R. and Arefi, M. (2016a), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., Int. J., 20(3), 513-543. https://doi.org/10.12989/scs.2016.20.3.513
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016b), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B, 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007
- Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016c), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermo-mechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055
- Nanthakumar, S., Valizadeh, N., Park, H.S. and Rabczuk, T. (2015), "Shape and topology optimization of nanostructures using a coupled XFEM/level set method", Comput. Mech., 56(1), 97-112. https://doi.org/10.1007/s00466-015-1159-9
- Plantema, F.J. (1966), Sandwich Construction: The Bending and Buckling of Sandwich Beams, Plates and Shells, John Wiley and Sons, New York, NY, USA.
- Rahmani, O., Khalili, S.M.R., Malekzadeh, K. and Hadavinia, H. (2009), "Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core", Compos. Struct., 91(2), 229-235. https://doi.org/10.1016/j.compstruct.2009.05.007
- Reissner, E. (1948), "Finite deflections of sandwich plates", J. Aeronaut. Sci., 15(7), 435-440. https://doi.org/10.2514/8.11610
- Sahmani, S. Bahrami, M. and Ansari, R. (2014), "Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory", Compos. Struct., 110, 219-230. https://doi.org/10.1016/j.compstruct.2013.12.004
- Salehi-Khojin, A. and Jalili, N. (2008), "Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings", Compos. Sci. Technol., 68(6), 1489-1501. https://doi.org/10.1016/j.compscitech.2007.10.024
- Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer Publication, New York, NY, USA.
- Shu, C. and Du, H. (1997), "Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates", J. Sound Vib., 34(7), 819-835.
- Taibi, F.Z., Benyoucef, S., Tounsi, A., Bouiadjra, R.B., Bedia, A.A. and Mahmoud, S. (2015), "A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 17, 99-129. https://doi.org/10.1177/1099636214554904
- Tajalli, S.A., Rahaeifard, M., Kahrobaiyan, M.H., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T. (2013), "Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory", Compos. Struct., 102, 72-80. https://doi.org/10.1016/j.compstruct.2013.03.001
- Vinson, J.R. (1999), The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic Publishing Co. Inc., Lancaster, England.
- Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029
- Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006
- Wang, Z.X. and Shen, H.S. (2011), "Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations", Compos. Struct., 93(10), 2521-2532. https://doi.org/10.1016/j.compstruct.2011.04.014
- Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotubereinforced composite face sheets", Compos. Part B, 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
- Wang, Y. and Wang, X. (2014), "Static analysis of higher order sandwich beams by weak form quadrature element method", Compos. Struct., 116, 841-848. https://doi.org/10.1016/j.compstruct.2014.06.015
- Wang, B., Zhao, J. and Zhou, S. (2010), "A microscale Timoshenko beam model based on strain gradient elasticity theory", Eur. J. Mech. A-Solid, 29(4), 591-599. https://doi.org/10.1016/j.euromechsol.2009.12.005
- Yang, F., Chong, A.C.M. and Lam, D.C.C. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", Compos. Struct., 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016
- Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pressure Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
- Zenkert, D. (1995), An Introduction to Sandwich Construction, Chameleon Press Ltd., London, UK.
- Zhang, C.L. and Shen, H.S. (2006), "Temperature-dependent elastic properties of single-walled carbon nanotubes: prediction from molecular dynamics simulation", Appl. Phys. Lett., 89(8), 081904. https://doi.org/10.1063/1.2336622
- Zhang, B., He, Y., Liu, D., Gan, Z. and Shen, L. (2014), "Non-classical Timoshenko beam element based on the strain gradient elasticity theory", Finite Elem. Anal. Des., 79, 22-39. https://doi.org/10.1016/j.finel.2013.10.004
Cited by
- Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings 2017, https://doi.org/10.1177/1077546317706887
- High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM vol.108, 2017, https://doi.org/10.1016/j.compositesb.2016.09.040
- Nonlinear high-order dynamic stability of AL-foam flexible cored sandwich beam with variable mechanical properties and carbon nanotubes-reinforced composite face sheets in thermal environment 2020, https://doi.org/10.1177/1099636217738908
- Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method vol.27, pp.1, 2016, https://doi.org/10.12989/scs.2018.27.1.035
- Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions vol.28, pp.2, 2018, https://doi.org/10.12989/scs.2018.28.2.149
- Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite vol.29, pp.3, 2018, https://doi.org/10.12989/scs.2018.29.3.405
- Analytical determination of shear correction factor for Timoshenko beam model vol.29, pp.4, 2016, https://doi.org/10.12989/scs.2018.29.4.483
- Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings vol.33, pp.1, 2016, https://doi.org/10.12989/scs.2019.33.1.093
- Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations vol.33, pp.4, 2016, https://doi.org/10.12989/scs.2019.33.4.509
- Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments vol.48, pp.5, 2016, https://doi.org/10.1080/15397734.2019.1646661
- Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2016, https://doi.org/10.12989/sem.2021.77.2.217
- New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2016, https://doi.org/10.12989/amr.2021.10.3.169
- Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets vol.28, pp.3, 2016, https://doi.org/10.12989/cac.2021.28.3.259