DOI QR코드

DOI QR Code

Racemic and enantiomeric effect of tartaric acid on the hydrophilicity of polysulfone membrane

  • Sharma, Nilay (Department of Chemical Engineering, Indian Institute of Technology Guwahati) ;
  • Purkait, Mihir Kumar (Department of Chemical Engineering, Indian Institute of Technology Guwahati)
  • 투고 : 2015.11.07
  • 심사 : 2016.03.09
  • 발행 : 2016.05.25

초록

The enantiomeric and racemic effects of tartaric acid (TA) on the properties of polysulfone (PSn) ultrafiltration membranes were studied in terms of morphology and hydrophilicity (HPCT) of membrane. Asymmetric membranes were prepared by direct blending of polyvinyl pyrrolidone (PVP) with D-TA and DL-TA in membrane casting solution. FTIR analysis was done for the confirmation of the reaction of PVP and TA in blended membranes and plain PSn membranes. Scanning electron microscope (SEM), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM) were used for analyzing the morphology and structure of the resulting membranes. The membranes were characterized in terms of pure water flux (PWF), hydraulic permeability and HPCT. PWF increased from $52L/m^2h$ to $79.9L/m^2h$ for plain and D-TA containing PSn membrane, respectively. Water contact angle also found to be decreased from $68^{\circ}$ to $55^{\circ}$. In Additionally, permeation and rejection behavior of prepared membranes was studied by bovine serum albumin (BSA) solution. A considerable increase in BSA flux (from $19.1L/m^2h$ for plain membrane to $32.1L/m^2h$ for D-TA containing membrane) was observed. FESEM images affirm that the pore size of the membranes decreases and the membrane permeability increases from 0.16 to 0.32 by the addition of D-TA in the membrane. D-TA increases the HPCT whereas; DL-TA decreases the HPCT of PSn membrane. PVP (average molecular weight of 40000 Da) with D-TA (1 wt%) gave best performance among all the membranes for each parameter.

키워드

과제정보

연구 과제 주관 기관 : Indian National Science Academy (INSA)

참고문헌

  1. Bhattacharjee, S., Dong, J., Ma, Y., Hovde, S., Geiger, J.H., Baker, G.L. and Bruening, M.L. (2012), "Formation of high-capacity protein-adsorbing membranes through simple adsorption of poly(acrylic acid)-containing films at low pH", Langmuir, 28(17), 6885-6892. https://doi.org/10.1021/la300481e
  2. Blanco, J.F., Sublet, J., Nguyena, Q.T. and Schaetzel, P. (2006), "Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process", J. Membr. Sci., 283(1-2), 27-37. https://doi.org/10.1016/j.memsci.2006.06.011
  3. Chakrabarty, B., Ghoshal, A.K. and Purkait, M.K. (2008), "Effect of molecular weight of PEG on membrane morphology and transport properties", J. Membr. Sci., 309(1-2), 209-221. https://doi.org/10.1016/j.memsci.2007.10.027
  4. Chen, M.Y. and Sailor, M.J. (2011), "Charge-gated transport of proteins in nanostructured optical films of mesoporous silica", Anal. Chem., 83(18), 7186-7193. https://doi.org/10.1021/ac201636n
  5. Cheryan, M. (1998), Ultrafiltration and Microfiltration Handbook.
  6. Duarte, A.R.C., Mano, J.F. and Reis, R.L. (2012), "The role of organic solvent on the preparation of chitosan scaffolds by supercritical assisted phase inversion", J. Supercrit. Fluid., 72(12), 326-332. https://doi.org/10.1016/j.supflu.2010.12.004
  7. El-Gendi, A., Abdalla, H. and Ali, S. (2012), "Construction of ternary phase diagram and membrane morphology evaluation for polyamide/formic acid/water system Australian", J. Basic Appl. Sci., 6(5), 62-68.
  8. Fane, A.G., Fell, C.J.D. and Waters, A.G. (1981), "The relationship between membrane surface pore characteristics and flux for ultrafiltration membranes", J. Membr. Sci., 9(3), 245-262. https://doi.org/10.1016/S0376-7388(00)80267-7
  9. Farbod, M. and Rezaian, S. (2012), "An investigation of super-hydrophilic properties of $TiO_2/SnO_2$ nanocomposite thin films", Thin Solid Films, 520(6), 1954-1958. https://doi.org/10.1016/j.tsf.2011.09.070
  10. Ghaemi, N., Madaeni, S.S., Abdolhamid, A., Rajabi, H., Daraei, P. and Falsafi, M. (2012a), "Effect of fatty acids on the structure and performance of cellulose acetate nanofiltration membranes in retention of nitroaromatic pesticides", Desalination, 301(17), 26-41. https://doi.org/10.1016/j.desal.2012.06.008
  11. Ghaemi, N., Madaeni, S.S., Alizadeh, A., Daraei, P., Badieh, M.M.S., Falsafi, M. and Vatanpour, V. (2012b), "Fabrication and modification of polysulfone nanofiltration membrane using organic acids: Morphology, characterization and performance in removal of xenobiotics", Sep. Purif. Technol., 96(14), 214-228. https://doi.org/10.1016/j.seppur.2012.06.008
  12. Ghosh, R. and Cui, Z.F. (1998), "Fractionation of BSA and lysozyme using ultrafiltration: effect of pH and membrane pretreatment", J. Membr. Sci., 139(1), 17-28. https://doi.org/10.1016/S0376-7388(97)00236-6
  13. Hand, A.J., Sun, T., Barber, D.C., Hose, D.R. and MacNeil, S.J. (2009), "Automated tracking of migrating cells in phase-contrast video microscopy sequences using image registration", J. Microsc. Microsc., 234(1), 62-79. https://doi.org/10.1111/j.1365-2818.2009.03144.x
  14. Higuchi, A., Ishida, Y. and Nakagawa, T. (1993), "Surface modified polysulfone membranes-separation of mixed proteins and optical resolution of tryptophan", Desalination, 90(1-3), 127-136. https://doi.org/10.1016/0011-9164(93)80170-R
  15. Kalsi, P.S. and Jagtap, S. (2013), Pharmaceutical Medicinal and Natural Product Chemistry, Narosa Publishing House PVT. LTD. ISBN 978-81-8487-038-1
  16. Kim, I.C. and Lee, K.H. (2003), "Effect of various additives on pore size of polysulfone membrane by phase-inversion process", J. Appl. Polym. Sci., 89(9), 2562-2566. https://doi.org/10.1002/app.12009
  17. Kimmerle, K. and Strathmann, H. (1990), "Analysis of the structure-determining process of phase inversion membranes", Desalination, 79(2-3), 283-302. https://doi.org/10.1016/0011-9164(90)85012-Y
  18. Kumar, R., Isloor, A.M., Ismail, A.F., Suraya, A. and Matsuurad, T. (2013), "Polysulfone-Chitosan blend ultrafiltration membranes: Preparation, characterization, permeation and antifouling properties", RSC Advances, 3(21), 7855-7861. DOI: 10.1039/C3RA00070B
  19. Li, G.M., Feng, C., Li, J.F., Liu, J.Z. and Wu, Y.L. (2008), "Water vapor permeation and compressed air dehydration performances of modified polyimide membrane", Sep. Purif. Technol., 60(3), 330-334. https://doi.org/10.1016/j.seppur.2007.05.007
  20. Li, J., Nie, S., Wang, L., Sun, S., Ran, F. and Zhao, C. (2013), "One-pot synthesized poly(vinyl pyrrolidoneco-methyl methacrylate-co-acrylic acid) blended with poly(ether sulfone) to prepare blood-compatible membranes", J. Appl. Poly. Sci., 130(6), 4284-4298. DOI: 10.1002/app.39463
  21. Machado, P.S.T., Habert, A.C. and Borges, C.P. (1999), "Membrane formation mechanism based on precipitation kinetics and membrane morphology: Flat and hollow fiber polysulfone membranes", J. Membr. Sci., 155(2), 171-183. https://doi.org/10.1016/S0376-7388(98)00266-X
  22. Mansourizadeh, A. and Ismail, A.F. (2010), "Effect of additives on the structure and performance of polysulfone hollow fiber membranes for $CO_2$ absorption", J. Membr. Sci., 348(1-2), 260-267. https://doi.org/10.1016/j.memsci.2009.11.010
  23. Mulder, M. (1991), Basic Principles of Membrane Technology, Kluwer Academic Publishers; Dordrecht, The Netherlands.
  24. Musale, D.A. and Kulkarni, S.S. (1997), "Relative rates of protein transmission through poly (acrylonitrile) based ultrafiltration membranes", J. Membr. Sci., 136(1-2), 13-23. https://doi.org/10.1016/S0376-7388(97)00179-8
  25. Nair, A.K., Isloor, A.M., Kumar, R. and Ismail, A.F. (2013), "Antifouling and performance enhancement of polysulfone ultrafiltration membranes using $CaCO_3$ nanoparticles", Desalination, 322, 69-75. https://doi.org/10.1016/j.desal.2013.04.031
  26. Peng, Z.G., Hidajat, K. and Uddin, M.S. (2004), "Adsorption of bovine serum albumin on nanosized magnetic particles", J. Colloid Interface Sci. 271(2), 277-283. https://doi.org/10.1016/j.jcis.2003.12.022
  27. Ravanchi, M.T., Kaghazchi, T. and Kargari, A. (2009), "Application of membrane separation processes in petrochemical industry: a review", Desalination, 235(1-3), 199-244. https://doi.org/10.1016/j.desal.2007.10.042
  28. Reuvers, J. and Smolders, C.A. (1987), "Formation of membranes by means of immersion precipitation. Part II. The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water", J. Membr. Sci., 34(1), 67-86. https://doi.org/10.1016/S0376-7388(00)80021-6
  29. Sharma, N. and Purkait, M.K. (2015), "Preparation of hydrophilic polysulfone membrane using polyacrylic acid with polyvinyl pyrrolidone", J. Appl. Polymer Sci., 132(22). DOI: 10.1002/app.41964
  30. Sinha, M.K. and Purkait, M.K. (2013), "Increase in hydrophilicity of polysulfone membrane using polyethylene glycol methyl ether", J. Membr. Sci., 437, 7-16. https://doi.org/10.1016/j.memsci.2013.03.003
  31. Sinha, M.K. and Purkait, M.K. (2014a), "Enhancement of hydrophilicity of poly(vinylidene fluoride-cohexafluoropropylene) (PVDF-HFP) membrane using various alcohols as nonsolvent additives", Desalination, 338(2), 106-114. https://doi.org/10.1016/j.desal.2014.02.002
  32. Sinha, M.K. and Purkait, M.K. (2014b), "Preparation and characterization of novel pegylated hydrophilic pH responsive polysulfone ultrafiltration membrane", J. Membr. Sci., 464(14), 20-32. https://doi.org/10.1016/j.memsci.2014.03.067
  33. Sinha, M.K. and Purkait, M.K. (2015), "Preparation of fouling resistant PSF flat sheet UF membrane using amphiphilic polyurethane macromolecules", Desalination, 355(1), 155-168. https://doi.org/10.1016/j.desal.2014.10.017
  34. Sivakumar, M., Malaisamy, M.R., Sajitha, C.J., Mohan, D., Mohan, V. and Rangarajan, R. (1999), "Ultrafiltration application of cellulose acetate-polyurethane blend membranes", Eur. Polym. J., 35(9), 1647-1651. https://doi.org/10.1016/S0014-3057(98)00262-6
  35. Tsai, D.H., DelRio, F.W., Keene, A.M., Tyner, K.M., Mac Cuspie, R.I., Cho, T.J., Zachariah, M.R. and Hackley, V.A. (2011), "Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods", Langmuir, 27(6), 2464-2477. https://doi.org/10.1021/la104124d
  36. Wang, D.M., Lin, F.C., Wu, T.T. and Lai, J.Y. (1998), "Formation mechanism of the macrovoids induced by surfactant additives", J. Membr. Sci., 142(2), 191-204. https://doi.org/10.1016/S0376-7388(97)00322-0
  37. Wei, X., Wang, Z., Wang, J. and Wang, S. (2012), "Novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfate", Membr. Water Treat., Int. J., 3(1), 35-49. https://doi.org/10.12989/mwt.2012.3.1.035
  38. Yalkowsky, S.H. and He, Y. (2010), Handbook of Aqueous Solubility Data, (2nd Edition), 100 p.
  39. Yan, X., He, G., Gu, S., Wua, X., Dua, L. and Wanga, Y. (2012), "Imidazolium-functionalized polysulfone hydroxide exchange membranes for potential applications in alkaline membrane direct alcohol fuel cells", Int. J. Hydrog. Energy, 37(6), 5216-5224. https://doi.org/10.1016/j.ijhydene.2011.12.069
  40. Zhang, Y., Shana, L., Tua, Z. and Zhang, Y. (2008), "Preparation and characterization of novel Ce doped non stoichiometric nano silica/polysulfone composite membranes", Sep. Purif. Technol., 63(1), 207-212. https://doi.org/10.1016/j.seppur.2008.05.015

피인용 문헌

  1. Preparation of activated carbon incorporated polysulfone membranes for dye separation vol.7, pp.6, 2016, https://doi.org/10.12989/mwt.2016.7.6.477
  2. Fabrication and characterization of polysulfone ultrafiltration membrane using polyethylene glycol and tartaric acid: morphology and performance in protein separation vol.8, pp.6, 2016, https://doi.org/10.12989/mwt.2017.8.6.591