DOI QR코드

DOI QR Code

Synthesis and characterization of poly(vinyl-alcohol)-poly(β-cyclodextrin) copolymer membranes for aniline extraction

  • Oughlis-Hammache, F. (Pharmaceutical Technology and Biopharmaceutics Laboratory, Faculty of Medicine and Pharmacy, Rouen University) ;
  • Skiba, M. (Pharmaceutical Technology and Biopharmaceutics Laboratory, Faculty of Medicine and Pharmacy, Rouen University) ;
  • Hallouard, F. (Pharmaceutical Technology and Biopharmaceutics Laboratory, Faculty of Medicine and Pharmacy, Rouen University) ;
  • Moulahcene, L. (Laboratoire des Procedes Membranaires et des Techniques de Separation et de Recuperation (LPMTSR), Faculte de Technologie, Universite A. Mira de Bejaia) ;
  • Kebiche-Senhadji, O. (Laboratoire des Procedes Membranaires et des Techniques de Separation et de Recuperation (LPMTSR), Faculte de Technologie, Universite A. Mira de Bejaia) ;
  • Benamor, M. (Laboratoire des Procedes Membranaires et des Techniques de Separation et de Recuperation (LPMTSR), Faculte de Technologie, Universite A. Mira de Bejaia) ;
  • Lahiani-Skiba, M. (Pharmaceutical Technology and Biopharmaceutics Laboratory, Faculty of Medicine and Pharmacy, Rouen University)
  • Received : 2015.04.22
  • Accepted : 2016.02.15
  • Published : 2016.05.25

Abstract

In this study, poly(vinyl-alcohol) and water insoluble ${\beta}$-cyclodextrin polymer (${\beta}$-CDP) cross-linked with citric acid, have been used as macrocyclic carrier in the preparation of polymer inclusion membranes (PIMs) for aniline (as molecule model) extraction from aqueous media. The obtained membranes were firstly characterized by X-ray diffraction, Fourier transform infrared and water swelling test. The transport of aniline was studied in a two-compartment transport cell under various experimental conditions, such as carrier content in the membranes, stirring rate and initial aniline concentration. The kinetic study was performed and the kinetic parameters were calculated as rate constant (k), permeability coefficient (P) and flux (J). These first results demonstrated the utility of such polymeric membranes for environmental decontamination of toxic organic molecules like aniline. Predictive modeling of transport flux through these materials was then studied using design of experiments; the design chosen was a two level full factorial design $2^k$. An empirical correlation between aniline transport flux and independent variables (Poly ${\beta}$-CD membrane content, agitation speed and initial aniline concentration) was successfully obtained. Statistical analysis showed that initial aniline concentration of the solution was the most important parameter in the study domain. The model revealed the existence of a strong interaction between the Poly ${\beta}$-CD membrane content and the stirring speed of the source solution. The good agreement between the model and the experimental transport data confirms the model's validity.

Keywords

References

  1. Boukhris, T., Lahiani-Skiba, M., Martin, D. and Skiba, M. (2013), "Pre-formulation of an oral cyclosporine free of surfactant", J. Incl. Phenom. Macrocycl. Chem., 75(3), 323-332. https://doi.org/10.1007/s10847-012-0189-6
  2. Chen, M., Diao, G. and Zhang, E. (2006), "Study of inclusion complex of ${\beta}$-cyclodextrin and nitrobenzene", Chemosphere, 63(3), 522-529. https://doi.org/10.1016/j.chemosphere.2005.08.033
  3. Deratani, A., Touil, S., Palmeri, J., Tingry, S. and Bouchtalla, S. (2006), "Pertraction of xylene isomers using cyclodextrin-containing membranes: mass transport mechanism and modelling", Desalination, 200(1), 103-105. https://doi.org/10.1016/j.desal.2006.03.258
  4. Eddaoudi, H., Deratani, A., Tingry, S., Sinan, F. and Seta, P. (2003), "Fullerene membrane transport mediated by ${\gamma}$-cyclodextrin immobilised in poly(vinyl alcohol) films", Polym Int., 52(8), 1390-1395. https://doi.org/10.1002/pi.1240
  5. Goupy, J. 2010), "Modelisation par les plans d'experiences-Plans pour surfaces de reponse", Tech. Ing., Ref No. 42419210.
  6. Hamaidi-Maouche, N., Bourouina-Bacha, S. and Oughlis-Hammache, F. (2009), "Design of experiments for the modeling of the phenol adsorption process", Chem. Eng. Data, 54(10), 2874-2880. https://doi.org/10.1021/je800959k
  7. Kafarov, V.V.I. (1974), "Methodes cybernetiques et technologie chimique",-Traduit du russe par C. Sinolecka. Editions Mir, Moscou, Technique Sovietique.
  8. Kaminari, N.M.S., Ponte, M.J.J.S., Ponte, H.A. and Neto, A.C. (2005), "Study of the operational parameters involved in designing a particle bed reactor for the removal of lead from industrial wastewater-central composite design methodology", Chem. Eng. J., 105(3), 111-115. DOI: 10.1016/j.cej.2004.07.011
  9. Laza-Knoerr, A.L., Gref, R. and Couvreur, P. (2010), "Cyclodextrins for drug delivery", J. Drug Target, 18(9), 645-656. https://doi.org/10.3109/10611861003622552
  10. Li, N., Wei, X., Mei, Z., Xiong, X., Chen, S., Ye, M. and Ding, S. (2011), "Synthesis and characterization of a novel polyamidoamine-cyclodextrin crosslinked copolymer", Carbohydr. Polym., 346(13), 1721-1727.
  11. Lin, X., Zhang, J., Luo, X., Zhang, C. and Zhou, Y. (2011), "Removal of aniline using lignin grafted acrylic acid from aqueous solution", Chem. Eng. J., 172(2-3), 856-863. DOI: 10.1016/j.cej.2011.06.073
  12. Lindqvist, N., Tuhkanen, T. and Kronberg, L. (2005), "Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters", Water Res., 39(11), 2219-2228. https://doi.org/10.1016/j.watres.2005.04.003
  13. Miyata, T., Iwamoto, T. and Uragami, T. (1996), "Characteristics of permeation and separation of xylene isomers through poly(vinyl alcohol) membranes containing cyclodextrin", Macromo. Chem. Phys., 197(9), 2909-2921. https://doi.org/10.1002/macp.1996.021970924
  14. Oughlis-Hammache, F., Hamaidi-Maouche, N., Aissani-Benissad, F. and Bourouina-Bacha, S. (2010), "Central composite design for the modeling of the phenol adsorption process in a fixed-bed reactor", J. Chem. Eng. Data, 55(7), 2489-2494. DOI: 10.1021/je900868v
  15. Paduraru, O.M., Vasile, C., Patachia, S., Grigoras, C. and Oprea, A.M. (2010), "Membranes based on poly(vinyl alcohol)/beta-cyclodextrin blends", Polymery, 10(6), 473-484.
  16. Rajasimman, M. and Sangeetha, R. (2009), "Optimization of process parameters for the extraction of chromium (VI) by emulsion liquid membrane using response surface methodology", J. Hazard. Mater., 168(1), 291-297. DOI: 10.1016/j.jhazmat.2009.02.044
  17. Sado, G. and Sado, Mz.-C. (1991), "Les plans d'experiences. De l'experimentation a l'assurance qualite", AFNOR, Paris La Defense.
  18. Skiba, M. (2011), "Nouveau procede de synthese de copolymeres, terpolymeres et tetrapolymeres de cyclodextrines et leurs utilisations", Brevet FR2954770.
  19. Skiba, M. and Lahiani-Skiba, M. (2013), "Novel method for preparation of cyclodextrin polymers: Physicochemical characterization and cytotoxicity", J. Incl. Phenom. Macrocycl. Chem., 75(3), 341-349. https://doi.org/10.1007/s10847-012-0246-1
  20. Touil, S., Tingry, S., Palmeri, J., Bouchtalla, S. and Deratani, A. (2005), "Preparation and characterization of ${\alpha}$-cyclodextrin-containing membranes-application to the selective extraction of xylene isomers", Polymer, 46(23), 9615-9625. https://doi.org/10.1016/j.polymer.2005.07.083
  21. Touil, S., Tingry, S., Bouchtalla, S. and Deratani, A. (2006), "Selective pertraction of isomers using membranes having fixed cyclodextrin as molecular recognition sites", Desalination, 193(1-3), 291-298. https://doi.org/10.1016/j.desal.2005.04.145
  22. Zhao, D., Zhao, L., Zhu, C., Tian, Z. and Shen, X. (2009), "Synthesis and properties of water-insoluble ${\beta}$-cyclodextrin polymer crosslinked by citric acid with PEG-400 as modifier", Carbohydr. Polym., 78(1), 125-130 https://doi.org/10.1016/j.carbpol.2009.04.022

Cited by

  1. High-flux ultrafiltration membrane with open porous hydrophilic structure using dual pore formers vol.227, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2019.04.081
  2. Adsorption of Paraquat by Poly(Vinyl Alcohol)-Cyclodextrin Nanosponges vol.13, pp.23, 2016, https://doi.org/10.3390/polym13234110