References
- U. I. K Galappaththi, A. M. De Silva, M. Draskovic and M. Macdonald, "Strategic quality control measures to reduce defects in composite wind turbine blades," Proceedings of the International Conference on Renewable Energies and Power Quality, Bilbao (Spain) (2013)
- H. Sohn, C. R. Farra, N. Hunter and K. Worden, "Applying the LANL statistical pattern recognition paradigm for structural health monitoring to data from a surfaceeffect fast patrol boat," LA-13761-MS, The Enginerring Institute, Los Alamos National Laboratory, NM (US) (2001)
- E. Figueiredo, G. Park, J. Figueriras, C. Farrar and K. Worden, "Structural health monitoring algorithm comparisons using standard data sets," No. LA-14393, The Engineering Institute, Los Alamos National Laboratory (2009)
- S. G. Taylor, K. Farinholt, M. Choi, H. Jeong, J. Jang, G. Park, J. R. Lee and M. D. Todd, "Incipient crack detection in a composite wind turbine rotor blade," Journal of Intelligent Material Systems and Structures, Vol. 23, No. 5, pp. 613-620 (2013)
- N. Dervilis, M. Choi, S. G. Taylor, J. R. Barthorpe, G. Park, C. R. Farrar and K. Worden "On damage diagnosis for a wind turbine blade using pattern recognition," Journal of Sound and Vibration, Vol. 333, pp. 1833-1850 (2014) https://doi.org/10.1016/j.jsv.2013.11.015
- N. Dervilis, M. Choi, I. Antoniadou, K. Farinholt, S. G. Taylor and R. Barthorpe, "Novelty detection applied to vibration data from a CX100 wind turbine blade under fatigue loading," Journal of Physics Conference Series 382(1): 012047 (2012) https://doi.org/10.1088/1742-6596/382/1/012047
- H. Sun, Y. Zi and Z. He, "Wind turbine fault detection using multiwavelet denoising with the data-driven block threshold," Applied Acoustics, Vol. 77, pp. 122-129 (2014) https://doi.org/10.1016/j.apacoust.2013.04.016
- J. Sierra-Perez, M. A. Torres-Arredondo and A. Guemes, "Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison," Composite Structures, Vol. 135, pp. 156-166 (2016) https://doi.org/10.1016/j.compstruct.2015.08.137
- F. P. G. Marquez, A. M. Tobias, J. M. P. Perez and M. Papaelias, "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Vol. 46, pp. 169-178 (2012) https://doi.org/10.1016/j.renene.2012.03.003
- A. Jungert, "Damage detection in wind turbine blades using two different acoustic techniques," The NDT Database & Journal (NDT) (2008)
- W. Y. Liu, B. P. Tang, J. G. Han, X. N. Lu, N. N. Hu and Z. Z. He, "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: a review," Renewable and Sustainable Energy Reviews, Vol. 44, pp. 466-472 (2015) https://doi.org/10.1016/j.rser.2014.12.005
- K. E. Johnson and P. A. Fleming, "Development, implementation, and testing of fault detection strategies on the national wind technology center's controls advanced research turbines," Mechatronices, Vol. 21(4), pp. 728-736 (2011) https://doi.org/10.1016/j.mechatronics.2010.11.010
- S. G. Taylor, G. Park, K. F. Farinholt, and M. D. Todd, "Fatigue crack detection performance comparison in a composite wind turbine rotor blade," International Journal of Structural Health Monitoring, Vol. 12, No. 3, pp. 252-262 (2013) https://doi.org/10.1177/1475921712471414
- K. M. Farinhot, S. G. Taylor, G. Park and Cutt M. Ammerman, "Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing," SPIE Smart Structures+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, p. 83430P-83430P-8 (2012)
- E. Figueiredo, G. Park, K. M. Farinholt, C. R. Farrar, and J. R. Lee, "Use of time-series predictive models for piezoelectric active-sensing in structural health monitoring applications," ASME Journal of Vibration and Acoustics, Vol. 134, No. 4, p. 041014 (2012) https://doi.org/10.1115/1.4006410