
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, Jan. 2016                                                117 
Copyright ⓒ2016 KSII 

 
A Multi-Class Task Scheduling Strategy for 

Heterogeneous Distributed Computing 
Systems 

 
S. F. El-Zoghdy1 and Ahmed Ghoneim2,1 

1 Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Egypt. 
[e-mail: elzoghdy@yahoo.com] 

2 King Saud University, Department of Software Engineering,  
College of Computer and Information Sciences 

Riyadh 11543, Saudi Arabia 
[e-mail: ghoneim@ksu.edu.sa] 

 
Received November 13, 2015; accepted October 12, 2015; published January 31, 2016 

 

 

Abstract 
 

Performance enhancement is one of the most important issues in high performance distributed 
computing systems. In such computing systems, online users submit their jobs anytime and 
anywhere to a set of dynamic resources. Jobs arrival and processes execution times are 
stochastic. The performance of a distributed computing system can be improved by using an 
effective load balancing strategy to redistribute the user tasks among computing resources for 
efficient utilization. This paper presents a multi-class load balancing strategy that balances 
different classes of user tasks on multiple heterogeneous computing nodes to minimize the 
per-class mean response time. For a wide range of system parameters, the performance of the 
proposed multi-class load balancing strategy is compared with that of the random distribution 
load balancing, and uniform distribution load balancing strategies using simulation. The 
results show that, the proposed strategy outperforms the other two studied strategies in terms 
of average task response time, and average computing nodes utilization. 
 
 
Keywords: Resource Management; Load Balancing; Distributed Computing; Queuing 
Theory. 

 
 
http://dx.doi.org/10.3837/tiis.2016.01.007                                                                                                          ISSN : 1976-7277 



118                                                                 El-Zoghdy and Ghoneim: A Multi-Class Task Scheduling Strategy 

1. Introduction 

Recently, many scientific problems become very complex and complicated. These problems 
require huge computing power and storage space. Most of the previous used technologies such 
as traditional parallel/ distributed computing systems become unsuitable for solving such 
problems. At the same time, the availability of low-cost powerful computers and high-speed 
networks are changing rapidly that leads nowadays to almost all computers are connected to 
the Internet. The networked computers form a (cluster of workstations) or a distributed system.  
This technology advances enhanced the possibility of using geographically distributed and 
multi-owner resources to solve large-scale problems in many fields such as science, 
engineering, and commerce.   

As a result, new computing paradigms such as Cluster, Grid, and Cloud computing have 
been emerged [1-3, 14]. These newly emerged computing environments are referred to as 
High Performance Distributed Computing Systems (HPDCS).  These Computing 
environments provide dependable, consistent, pervasive, and inexpensive access to high-end 
computational capabilities such as computers, storage space, software applications, and data.  
They support the sharing and coordinated use of resources independently of their type and 
location in dynamic virtual organizations (VOs) consisting of individuals, institutions, and 
resources solving computationally intensive applications. Also, these computing systems use 
common interface to link computing clusters or LANs together.  

 Many users or VOs can share these clusters and through a local resource management 
system, each cluster or LAN applies a local policy that defines their access rights. The  primary 
motivation of these newly emerged computing systems is to provide users and applications 
with pervasive and seamless access to vast high performance computing resources by creating 
an illusion of a single system image. Thus HPDCS are designed so that users won't have to 
worry about where computations of their tasks are being performed [1-3,5-8,11,13-19]. 

The HPDCS offer a variety of services such as computation services, application services, 
data services, information services, and knowledge services. These services are provided by 
the servers or processing elements in the computing system. The servers and the processing 
elements are typically heterogeneous in the sense that they have different processor speeds, 
memory capacities, and I/O bandwidths [1-3,7,14-19,21-29].  

In such computing systems, online users submit their jobs anytime and anywhere to a set of 
dynamic resources. Jobs arrival and processes execution times are stochastic. The 
heterogeneity of the available resources coupled with the  uneven job arrival patterns, and  
stochastic distribution of job processes execution times may lead to a situation where some 
computing nodes become heavily loaded while others in a different site may be lightly loaded 
or even idle. 

It is therefore desirable to transfer some jobs from the heavily loaded servers to the idle or 
lightly loaded ones aiming to efficiently utilize the available computing resources. The process 
of load redistribution is known as load balancing.  To achieve the promising potentials of 
tremendous distributed computing resources, efficient and effective load balancing and 
resource management algorithms should be utilized [1-10].   

Load balancing algorithms can be classified into static or dynamic [4,8,9,40]. In static load 
balancing policies, the load balancing decisions are made deterministically or probabilistically 
at compile time and remain constant during runtime. They are not affected by the runtime 
system state. In contrast, dynamic load balancing policies attempt to use the runtime system 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016                                        119 

state information to make more informative load balancing decision, see [4,8,9,10,11,40] for 
more details.   

A number of load balancing algorithms for traditional parallel and distributed systems have 
been developed [4,9,12,20,40]. Unfortunately, these load balancing algorithms cannot work 
directly in recent distributed computing environments such as Cluster, Grid, and Cloud 
computing systems. Therefore, it is essential to consider the impact of various dynamic 
characteristics of the HPDCS in designing and analyzing the load balancing algorithms 
[1-3,14,29] for such computing systems.. 

Recently, many papers have been published to address the problem of load balancing in 
HPDCS [14,15-18,41]. Almost all of these papers considered jobs as one class. They ignored 
the fact that distributed system's jobs varies widely by their nature. These jobs range from 
batch processes and CPU-bounded jobs to real time and even traditional jobs. For each job it is 
required to satisfy the associated performance and quality of service constraints. Hence, it is 
therefore important to classify these jobs into different classes aiming to utilize the system 
resources effectively and at the same time satisfies the users demands.  Only a little number of 
researchers dealt with the multi-class of jobs load balancing problem in HPDCS such as [12, 
19,20].  

In this paper, we propose a load balancing strategy for multiclass jobs that could be used in 
the HPDCS. The proposed load balancing strategy takes into account the heterogeneity of the 
system's computational resources as well as the task heterogeneity. The performance of the 
proposed load balancing strategy is evaluated and compared with two other load balancing 
strategies by simulation. The simulation results show that the performance of the proposed 
load balancing strategy outperforms the other studied strategies in terms of average job 
response time, and average computing node utilization. 

The rest of this paper is organized as follows: Section II presents related work. Section III 
describes the studied model and assumptions. Section IV introduces the proposed multi-class 
load balancing strategy. Section V presents the simulation results and discussion. Finally, 
Section VI summarizes this paper. 

2. Related Work 
HPDCS consist of a dynamic set of heterogeneous resources communicating via one or 

more communication networks.  Users of these systems submit their tasks at anytime and 
anywhere. One of the most important problems in the HPDCS is balancing the system 
workloads among computing nodes aiming to efficiently utilize available resources and hence 
improve system performance [14,19,29].  A large number of researchers studied the load 
balancing problem in the traditional parallel and distributed systems. They developed a 
number of load balancing algorithms such as [4,9,10,20,37,40].  Unfortunately, these 
algorithms cannot work directly in the recent HPDCS because they do not consider the 
dynamic characteristics and the heterogeneity of these systems in designing and analyzing the 
load balancing algorithms. Some of these load balancing algorithms have been modified to be 
able to deal with the HPDCS, and other completely new load balancing algorithms for such 
computing systems have been developed.   

In [17], the authors proposed a simple and efficient load balancing algorithm that balances 
the system workloads between computing clusters that are far apart from each other. In [29,39],  
the authors presented a general survey of job scheduling and resource management strategies 
in grid computing environment. Also  in [30, 31], the authors presented a static load balancing 
algorithm in a heterogeneous system with servers and computing nodes where servers balance 



120                                                                 El-Zoghdy and Ghoneim: A Multi-Class Task Scheduling Strategy 

load among all computing nodes in a round robin fashion.  Their algorithm requires each 
server to have the workload information of the status for all computing nodes as well as the 
load allocated by all other servers. The authors in [32] presented load balancing strategy for a 
heterogeneous distributed computing system environment in which the scheduler selects 
computational resources based on the task characteristics, task requirements, and resource's 
information. The aim of their strategy was to minimize the Total Time to Release (TTR) for 
the individual task. TTR includes processing time of the task, waiting time in the queue, 
transfer of input and output data to and from the resource. The load balancing algorithms 
presented in [33] introduce a job migration strategy that balances the system workload when 
any of the computing nodes becomes overloaded, but they does not consider the system 
resource and network heterogeneity.  

In [34], the authors proposed a ring topology for the Grid computing managers. The Grid 
managers are responsible for managing a dynamic pool of computing nodes. They proposed a 
load balancing algorithm based on the real computing nodes workload information. 
Unfortunately,  it is not applicable because of its huge overhead cost in collecting the 
computing nodes workload information specially for large scale systems.  The authors in 
[1,3,22,25,34-36]  introduced many hierarchical load balancing algorithms for heterogeneous 
distributed computing  systems. These algorithms are implemented at various levels to reduce 
the communication overhead and hence minimize the mean response time of the system's 
application. 

In [22],  load balancing strategies are proposed for a 2-level hierarchy grid computing 
model. The authors evaluated the performance of these strategies at the global scheduler and 
local scheduler levels.  The strategies presented in [11,22] did not have any task allocation 
procedure and they also did not consider the communication cost between clusters. Their load 
balancing strategy collects the computing nodes workload information periodically by a 
central master node called Grid Manager. This is a centralized policy and it suffers from the 
central point of failure problem as the failure of the Grid Manager leads to the whole system 
failure. 

 In [3] a two-level load balancing strategy is presented. It takes into account the 
heterogeneity of the distributed system computing resources. This strategy balances the 
system's workload based on the processing capacity of the computing nodes. It overcomes the 
bottleneck of the strategies presented in [11,22,25]. It removes the Grid Manager node which 
centralizes the system global load information. In [35], the same authors of [34] presented 
Grid managers hierarchical structure which improves scalability of the grid computing 
environment. Their load balancing strategy has task allocation policy which regulates 
automatically the job flow rate directed to a given grid manager. In [15], the authors presented 
a two levels task scheduling strategy which balances the workload in cloud computing. It takes 
into account the new features of cloud computing, such as virtualization and flexibility etc. In 
[16,17], comparative studies between some of the existing cloud computing load balancing 
algorithms are conducted. 

All the previously discussed strategies deal with the user tasks as one class which is against 
the reality as the tasks differ in many aspects by nature. Some tasks may be I/O-Bounded, 
CPU-Bounded, and others may be interactive. Hence, it is not fair to deal with all tasks as one 
class. Only countable number of researchers deals with users tasks as multi-classes.  In [12]   
the authors presented a new metrics to qualify system availability and heterogeneity for 
multi-class user tasks. In [20,40], the authors studied  the problem of scheduling different 
classes of users tasks in heterogeneous distributed computing systems. They proposed optimal 
static load balancing policies. Finally, the authors in [19] proposed two dynamic load 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016                                        121 

balancing schemes for multi-user jobs in heterogeneous distributed systems and compared 
their performance using simulation. The objectives of the two polices are different. The first 
one minimizes the whole system average response time, while the other minimizes the average 
task response time individually. Their performance is compared with another two static load 
balancing strategies. As usual the dynamic strategies outperforms the static ones in terms of 
response time for low and moderate  communication overhead, and they have the same 
performance as the static ones if the system  communication overhead is high. 

In this paper, we propose a multi-class load balancing strategy that balances different 
classes of non-cooperative user’s tasks on multiple heterogeneous distributed computing 
nodes. The main goal of this strategy is to minimize the per-class mean response time. The 
scheduler consists of two modules. The first is the availability detecting model that is used to 
find all computing nodes in the system that satisfy all the requirements of every submitted job 
from all classes, and group these candidate computing nodes. The second is the load balancing 
model. It receives the set of candidate computing nodes from the availability detecting model 
and selects from them the one that gives the minimal response time to execute the user job. 
The proposed multi-class load balancing strategy takes into account the heterogeneity of the 
computing nodes. It distributes the system's workload among all the available computing 
nodes by evenly distributing the service utilization aiming to minimize the response time.  

The system average job response time, and the average computing node utilization are 
considered as the main performance metrics that need to be minimized and maximized 
respectively.  The computing nodes utilize a local priority scheduling policy that gives higher 
priority to job classes with higher service rates at that computing node.   

The proposed strategy provides the following unique characteristics of practical distributed 
computing environment: 

• Heterogeneity: The heterogeneity of system's computing nodes is considered in the 
proposed strategy.   

• Tasks are non-preemptable:  The execution of the tasks on any computing node 
can't be suspended until completion.      

• Tasks are totally independent: There is no inter-process communication between 
tasks. 

• Tasks are computation intensive (CPU-bounded): Tasks spend more time doing 
computations in the CPU than doing I/O operations. 
 

3. Proposed Framework 
In this paper, we consider a heterogeneous distributed computing system model in 

which a set of n Computing Nodes (CNs) are connected via a high speed network as shown in 
Fig. 1. In this network, nodes are numbered 1, 2,...,n, and the system is utilized to process m 
independent classes of non-cooperative tasks submitted by users.  Each computing node  in the 
system consists of a single exponential server with a service rate μi (i = 1, 2, ...,n), and its 
service discipline is first-come-first-served (FCFS), or processor sharing whereby the service 
rate for each job equals  µi / n when the number of jobs in the ith node queue  is n. 

 
 



122                                                                 El-Zoghdy and Ghoneim: A Multi-Class Task Scheduling Strategy 

 
Fig. 1. System architecture 

 

 Computing nodes in the system differ in their speeds, memory, and disk space. A master node 
or a load manager is responsible for balancing system's workload and monitoring available 
system resources. Fig. 2 shows the system queueing model. It consists of a task scheduling 
queue, task scheduler, and n local task queues. The scheduler queue is a temporarily buffer that 
is large enough to hold all incoming tasks.  The FCFS scheduling policy is applied for tasks 
waiting in schedule queue, and local queues. FCFS ensures certain kind of fairness, does not 
require advance information about the task execution time, do not require much computational 
effort, and is easy to implement. The scheduler is composed of two modules namely: 
Availability Detecting Model (ADM), and Load Balancing Model (LBM). For every task in jth 
class, the ADM finds all CNs in the system which satisfy the task requirements, and group 
these CNs in the set Aj. The ADM then passes the set Aj to the LBM to select the computing 
node from Aj that offers the minimal anticipated response time for executing the task as a 
candidate computing node. Users can submit tasks form any of the m classes to the system.  

 
Fig. 2. System queuing model 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016                                        123 

 
We assume that the tasks submitted to the system are totally independent tasks with no 
inter-process communication between them, and that they are computation intensive tasks. 
Also, we assume that tasks of the jth  (1 ≤ j ≤ m) class arrive to the system according to ergodic 
process, such as time-invariant Poisson process, with inter-arrival times which are 
independent, identically, and exponentially distributed with rate λk. Simultaneous arrivals are 
excluded.   
For future reference, the notation that is used throughout this paper is summarized in the 
following table: 
 

Table 1.  Notation Definitions 
Notation Definition 

n 
Number of computing nodes in the system 

)1( ∞≤≤ n  
m Number of classes of tasks submitted to the system )1( ∞≤≤ m  

jλ  jth class task arrival rate to the system 
λ  Total system arrival rate from all classes  (See Eq. 1). 

ijP  
The probability that tasks from the jth class are dispatched to the ith computing 
node. 

ijβ  Processing rate (load) at ith node from jth class tasks. (See Eq. 2) 

iβ  Total processing rate (load) of computing node i. (See Eq. 3) 
β  System's total task processing rate (load) for all classes. (See Eq. 4) 

ijµ  Allocated service rate at ith node for jth class task's. 

iµ  Total service rate of computing node i (See Eq. 5). 
µ  Total system service rate (See Eq. 6). 

ijρ  jth class service utilization at the ith node (See Eq. 7) 

iρ  ith computing node service utilization (See Eq. 8) 
ρ  System service utilization (See Eq. 9). 

jρc  
 

The system jth class service utilization (See Eq. 10) 

TNi The ith computing node’s mean response time over all classes (See Eq. 11). 
TCj System expected mean task response time of jth class tasks (See Eq. 12). 
T The system’s mean response time (See Eq. 13). 

 
The system total task arrival rate from all classes is denoted by λ and jλ  is the jth class task 
arrival rate to the system. Hence    

∑
=

=
m

j j1
λλ  (1) 

Denote ijβ  as the ith computing node processing rate of the jth class tasks, which is also 
referred to as ith computing node load from the jth class.  
Let ijP  be the probability that ith computing node  receives tasks from the jth class, where 
i=1,2,…,n, and j=1,2,…,m. 
 



124                                                                 El-Zoghdy and Ghoneim: A Multi-Class Task Scheduling Strategy 

Hence, the ith computing node workload from the jth class is computed by: 
 

.,21  and,21 , ?m,j= ?n, ,  i=P jijij λβ =  (2) 
   

                                                
Hence, the total workload of the ith computing node i from all classes can be expressed as 
 

∑ ∑
= =

==
m

j

m

j
jijiji ?n, i=P

1 1
.,21  ,λββ  (3) 

  
As a result, the system’s total workload from all classes, β , can be computed as follows: 
 

∑ ∑∑ ∑∑
= = = = =

===
n

i

n

i

m

j

n

i

m

j
jijiji P

1 1 1 1 1
λβββ  (4) 

 
Denote ijµ  as the allocated service rate at ith node for jth class task. Hence the corresponding 

expected service time is computed by
ijµ

1
. As mentioned earlier, the service times of every 

computing node has exponential distribution which is independent from the arrival process.   
Hence the ith computing node service rate can be computed by:  
 

.21
1

,...,n,,   iμμ
m

j
iji ==∑

=

 (5) 

 
Consequently, the total system service rate is computed by: 
 

∑ ∑∑
= = =

==
n

i

n

i

m

j
iji μμμ

1 1 1
 (6) 

 
Denote ijρ as the jth class service utilization (traffic intensity) at the ith computing node. It is 
computed by: 
 

.21and 21, ,...,m, j,...,n,, i
P

ij

jij

ij

ij
ij ====

µ
λ

µ
β

ρ  (7) 

 
Hence, the service utilization for all tasks allocated to ith computing node is computed by: 
 

.21,
11

,...,n, i
i

i
m

j ij

ij
m

j
iji ==== ∑∑

== µ
β

µ
β

ρρ  (8) 

 
Consequently, the total system service utilization can be computed by:  
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016                                        125 

µ
β

µ
β

µ
β

ρρρ ===== ∑∑ ∑∑∑∑
== = ===

n

i i

i
n

i

n

i

m

j ij

ij
m

j
ij

n

i
i

11 1 111
 (9) 

    
Finally, the total system service utilization of the jth class jρc  can be computed as follows: 
 

∑
∑

∑
=

=

=

====
n

i
n

i
ij

j

ij

ij
n

i
ijj mjρc

1

1

1
,..,2,1,

µ

λ
µ
β

ρ  
(10) 

 
The stability condition for the studied system model is λ < µ, see [38] for more details. 
In this research, each node is modeled as a single M/M/1 queue. Thus the mean response time 
of the ith computing node can be computed as follows: 
 

.21  ,
)1(
)/1( ,...,n,iTN
i

i
i =

−
=

ρ
µ

 (11) 

 
Hence, the system expected mean response time for the jth class tasks can be obtained as 
follows: 
 

.21  ,
1

,...,m,jTNPTC
n

i
iijj ==∑

=

 (12) 

 
Form Eq. 12, the average overall system mean response time overall classes can be computed 
by: 
 

∑ ∑∑
= ==









=








=

m

j

n

i
iij

j
m

j
j

j TNPTCT
1 11 λ
λ

λ
λ

 (13) 

 
From Eq. 13, one can notice that the overall system mean task response time can be minimized 
by minimizing the mean response time of jth class. Hence, the scheduling problem can be 
expressed as follows: 

.21 and21              ,0                 

,21    ,                  

subject to

.21  ,   Minimize

n

1i
ij

1

,...,m,j ,...,n, ,i

,...,m,j

,...,m,jTNPTC

ij

j

n

i
iijj

==≥

==

==

∑

∑

=

=

β

λβ

 

4. Proposed Multi-Class Load Balancing Strategy 
In this section, the strategy of scheduling different classes of tasks on multiple 

distributed heterogeneous CNs (servers) is presented.  The proposed strategy takes into 



126                                                                 El-Zoghdy and Ghoneim: A Multi-Class Task Scheduling Strategy 

account the heterogeneity of the system's computational resources. It balances the system's 
workload among CNs by evenly distributing the service utilization aiming to minimize the 
average response time. In other words, the system's workload is perfectly balanced between 
CNs by making all the CNs service utilization equal. This strategy minimizes the per-class 
mean response times. It has two distinct decisions: 
 

• The tasks allocation to the CNs; and 
• The tasks execution order at each computing node.  

 
The first decision is considered as a global load-balancing optimization problem in which the 
tasks are distributed among the multiple heterogeneous CNs to minimize the mean 
response-time of each class. The second is a local decision at each computing node and 
consists of solving an optimal sequencing problem: given a mix of tasks at a computing node, 
determine the best order of service for the queued tasks to minimize the mean class response 
time.  The proposed scheduling strategy puts the following restrictions on these two decisions: 
 

• Allocation: tasks are allocated to CNs immediately upon arrival in a probabilistic 
manner; i.e., a task is assigned to a CN based on routing probabilities 

.}{ mj1 ,1 ≤≤≤≤ niijP  the values of the routing probabilities are determined using the 
scheduling strategy algorithm which minimizes the mean class task response time. 
This algorithm will be explained later. 

• Sequencing: The sequencing strategy is the same at each CN and it is a simple static 
priority policy. It does not require knowledge of the future, and the execution of a task 
cannot be interrupted and subsequently resumed (i.e., non-preemptive).  

 
The proposed scheduling strategy utilizes an existing optimal sequencing strategy [20] which 
minimizes the mean response time of all classes. It is based on proposition 2.1 in [20].  
 
Proposition 1. Given an n-node heterogeneous system, and an m-class M/M/1 queue, class j 
has arrival rate jλ  and service rate ijµ  at node i. The sequencing strategy on node i that gives 

priority to class j over k whenever ikij µµ ≥   minimizes the system overall mean response 
time; see Eq. 13. 
This proposition can be proved directly from proposition 2.1 in [20]. 
Proposition 1 indicates that classes with higher service utilization are given high priority in the 
scheduling process.  Using this sequencing strategy, and without loss of generality, the task 
classes are reordered and labeled such that  mρcρcρc ≥≥≥ ...21  

Where, 

∑
=

n

i
ij

j

1
µ

λ
, ( j=1,2,…,m) is the system jth class service utilization (See Eq. 10). 

This relabeling process assigns a number of priority levels to the task classes. As a result of 
this sequencing strategy the jth class tasks are assigned priorities higher than the kth class tasks 
if  j<k. 
For the allocation strategy, the master node (load manager) allocates arriving tasks to CNs 
immediately upon arrival in a probabilistic manner; i.e., a task is assigned to a CN based on 
routing probability .}{ mj1 ,1 ≤≤≤≤ niijP  The proposed allocation algorithm determines the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016                                        127 

probability that minimizes the response time of all classes. This algorithm selects the CN that 
minimizes the mean class task response time, and at the same time, it should not be overloaded 
for computing the task.  
To satisfy this, the proposed algorithm uses the following service utilization measure Li to 
detect the relative workload of each computing node i: 
 

.21  , ,...,n,i

n

L i
i =









=
ρ
ρ

 
(14) 

 
Where iρ is the ith computing node service utilization given by Eq. (8), and (ρ/n) is the 
system's average computing node utilization given by Eq. (9). The proposed scheduling 
strategy aims to keep Li very close to 1 which means that the system's CNs service utilization 
is evenly distributed. In the following lines, we list the details of the proposed allocation 
algorithm: 
We assume that the tasks submitted to the system are totally independent tasks with no 
inter-process communication between them, and that they are computation intensive tasks. 
The FCFS scheduling policy is applied for tasks waiting in queues, both at schedule queue and 
Local queues. FCFS ensures certain kind of fairness, does not require advance information 
about the task execution time, does not require much computational effort, and is easy to 
implement [2,3]. 
 

4.1 Multi-Class Load Balancing Strategy 
1. Reorder and label the task classes such that m21 ρc...ρcρc ≥≥≥ , where, 

∑
=

= n

i
ij

j
jρc

1
µ

λ
, ( j=1,2,…,m) is the system jth class service utilization. 

2. For each class j do 
a. Set ∞=TC ; /* as initial value for the class response time */. 
b. Set Nmin=1, and Lmin=∞ ;/* Assume that the lightest CN is node 1 and its 

relative workload is ∞ */ 
c. Create a set of CNs Aj that satisfy the jth class tasks software and hardware 

requirements )( nAj ⊆ . 
d. For each computing node i in Aj do 

i. Set Pij=1;/* assume that the task will be allocated to that computing 
node, and calculate the expected response time for jth class TCj using  
Eq. 12 */ 

ii. Calculate the relative workload Li for that node using Eq. 14. 
iii. if  ((TCj<TC) && (Li<Lmin)) then 

1. TC=TCj; 
2. Lmin=Li; 
3. Nmin=i; 

iv. End if  
e. End for 



128                                                                 El-Zoghdy and Ghoneim: A Multi-Class Task Scheduling Strategy 

f. 1
min

=jNP ; /* that is jth class task will be allocated to Nmin computing node */ 
g. Allocate jth class tasks to computing node Nmin; 

3. End for 
 
The previously outlined task allocation algorithm aims to minimize the mean response time 
for multiclass tasks running in a heterogeneous distributed computing systems. In step 1, the 
algorithm starts by reordering and labeling all the classes in a way that gives higher priorities 
to classes with higher traffic intensity. This is done by reordering the classes in a way that the 

following condition; 

∑∑∑
===

≥≥≥ n

i
im

m
n

i
i

n

i
i

11
2

2

1
1

1 ....
µ

λ

µ

λ

µ

λ
 is satisfied. 

For every class j, the algorithm sets initial values for the class response time TC, lightest 
computing node Nmin, and lowest workload Lmin in steps 2.a, and 2.b. Then in step 2.c, the 
algorithm creates a set Aj of CNs that satisfy the class task hardware and software 
requirements.  Step 2.d is the core of the proposed allocation algorithm.  It selects the 
computing node Nmin in Aj that minimizes the jth class mean response time and has the lightest 
work load Lmin by computing the relative workload using Eq. 14. This is done by estimating 
the jth class expected mean response times and the relative workloads for all CNs in the set Aj 
using equations 11 and 13 respectively. Step 2.d in the algorithm has three sub-steps. The 
sub-step 2.d.i assumes that the jth class tasks will be allocated to the ith computing node ( i in 
Aj) by setting Pij=1 and then it computes the jth class expected mean response times on that CN 
using Eq. 12. After that, in the sub-step 2.d.ii, the algorithm computes the relative workload Li 
for the candidate computing node i in Aj using Eq. 14. Finally, in the sub-step 2.d.iii, the 
algorithm determines the computing node Nmin in Aj that minimizes jth class tasks mean 
response time and having the lightest relative workload.  Steps 2.f, and 2.g allocate jth class 
tasks to Nmin node by setting 1

min
=jNP  which minimizes the class mean response time.  

 

4.2 Performance Metrics  
The performance metrics used to evaluate the proposed strategy in this research are: 
 

1. Average Task Response Time: The length of time between the instant from the task 
arrival time to the system and the instant when it leaves it, after all processing and 
communication are over is referred to as the task response time.  The average response 
time of multiple task classes is computed as in Eq. 13. 

2. Average Computing Node Utilization: It is the average of the percentage of total node 
busy time out of total node available time for all computing nodes.  

5. Simulation Results and Discussion 

5.1 Experimental Environment 
In this section, the performance of the proposed multi-class load balancing algorithm 

is evaluated using simulation.  Even though there are many available tools for simulating 
scheduling algorithms such as network simulator NS2, OmNet++, Arena, Alea, OptorSim, and 
GridSim, in this study, all the simulation experiments are performed using GridSim v4.0  [25]. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016                                        129 

It provides facilities for modeling and simulating entities in distributed computing 
environments such as users, heterogeneous resources, applications, and resource load 
balancers which are used in designing and evaluating load balancing algorithms.  To 
effectively evaluate the performance of the proposed multi-class load balancing algorithm, a 
heterogeneous environment for the studied model is built using different resource 
specifications. In this environment, resources differ in their operating systems, storage, CPU 
speed, and RAM.  Using GridSim, Gridlet objects are used to model user tasks. It has all 
needed information related to the task's and the execution management details.  Also, from the 
Grid Information Service (GIS) entity, all the needed information about the available system 
resources can be obtained as it keeps track of all resources available in the simulation 
environment. A PC (Core I3 Processor, 3.1 GHz, 4GB RAM) running on Windows 7 OS is 
used to carry out all the simulations experiments. 
 

5.2 Simulation Results and Analysis 
Tasks form different classes arrive to the scheduler sequentially with inter-arrival 

times which are independent, identically, and exponentially distributed. Simultaneous arrivals 
are excluded. Service times are independent and exponentially distributed. Task parameters 
(such as size, requirements and service demand) are generated randomly.  Each result 
presented is the average value obtained from 10 simulation runs with different random 
numbers seeds. In the simulator, collecting statistics starts after ten minutes warm up interval. 
All time units are in seconds. The performance of the proposed algorithm is evaluated using a 
wide range of system parameters by varying the system arrival rate λ , system service 
rate µ and number of computing nodes n.  

   The performance of a heterogeneous distributed computing system under the 
proposed multi-class load balancing strategy is compared with two other policies namely; 
Random Distribution Load Balancing Strategy (RDLBS) and Uniform Distribution Load 
Balancing Strategy (UDLBS). In the RDLBS a computing node for a task execution is selected 
randomly without considering any performance metrics to that computing node or to the 
system in mind. This strategy is explained in [22].   

In the UDLBS the tasks flow rate (routing probability) from the scheduler to a 

computing node is fixed to the value
n
1

, where n is the number of computing nodes in the 

system. However, in the Proposed Multi-Class Load Balancing Strategy (PMCLBS) all the 
arriving user tasks from different classes to the scheduler are distributed on the computing 
nodes that minimize their class response time. Also, the computing nodes utilize a scheduling 
policy which gives higher priority to classes with higher service rates and this policy 
minimizes the response time as it is proved in [20].  

   In the first experiment, we study the effect of varying the system's traffic intensity 
from 0.1 to 0.9 on the performance of a heterogeneous distributed computing system having 
16 computing nodes. Fig. 3, shows the system average response time of the three evaluated 
scheduling strategies. From that figure, one can easily notice that the PMCLBS outperforms 
the RDLBS and the UDLBS in terms of average response time. The improvement in response 
time increases as the system traffic intensity increases. This performance was anticipated 
because the PMCLBS allocates tasks to a computing node which minimizes the class response 
time, and the computing node in turn utilizes a scheduling policy which gives higher priority to 
classes with higher service rates.  In contrast, the RDLBS randomly selects a computing node 



130                                                                 El-Zoghdy and Ghoneim: A Multi-Class Task Scheduling Strategy 

for executing task and the computing node in turn services tasks using pure FCFS scheduling 
policy. Also, the UDLBS evenly distributes the system workload on the computing nodes 
without putting any (computing node, or system) performance metrics in mind, and the 
computing node in turn services tasks using pure FCFS scheduling policy.   

Fig. 4, shows the average computing node utilization using the three evaluated 
scheduling strategies. From that figure, it is clear that as the system traffic intensity increases, 
the computing nodes utilization increases using the three evaluated scheduling strategies. The 
utilization of computing nodes is almost the same for low system workloads. The PMCLBS 
utilizes the computing nodes more efficiently that the RDLBS, and the UDLBS for higher 
system workloads. 
 

 
Fig. 3.  Task average response time 

 
 

 
Fig. 4. Average computing nodes utilization 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016                                        131 

In the second experiment, the effect of varying number of computing nodes n form 2 
to 128 on the system performance using the same performance metrics is studied. Fig. 5 shows 
the effect of changing number of computing nodes on the average task response time using the 
three evaluated scheduling strategies. It is clear from that figure that PMCLBS outperforms 
the RDLBS and the UDLBS. The improvement is of a certain magnitude for moderate number 
of computing nodes. The performance of the three studied load balancing strategies converges 
when the number of computing nodes is low or high. This is logical because when the number 
of computing nodes is low, the computing nodes become highly loaded and almost all tasks 
suffer from waiting in the queues. Also, when the number of computing nodes increases, their 
utilization decreases because many of them will be available. This removes the effect of 
balancing the workload using the three evaluated load balancing strategies, and this explains 
why the response time obtained by the three strategies is almost the same for low and high 
number of computing nodes. This result is ensured in Fig. 6 which presents the effect of 
varying the number of computing nodes on their average utilization using the three evaluated 
scheduling strategies. It is noticed from that figure that the computing nodes utilization 
decreases as their number increases. Again, one can notice that the PMCLBS outperforms the 
other two strategies in terms of average computing node utilization when the number of 
computing nodes is moderate. Also, when the number of computing nodes is low or high, the 
performance of three studied scheduling strategies is almost the same for the same reason 
explained earlier.  
 
 
 

 
 

Fig. 5. Average response time versus number of computing nodes 
 
 
 
 
 
 



132                                                                 El-Zoghdy and Ghoneim: A Multi-Class Task Scheduling Strategy 

 
 

 

Fig. 6. Computing nodes utilization versus number of computing 

5. Conclusion 
In this research paper, we studied the problem of scheduling different classes of user 

jobs on heterogeneous distributed computing systems. A multi-class load balancing strategy 
aiming to minimize the average per-class response time is proposed.  The performance of the 
proposed multi-class load balancing strategy is compared with that of the random distribution, 
and uniform distribution load balancing strategies. The simulation results show that, the 
propose scheduling strategy outperforms the random and uniform distribution load balancing 
strategies in terms of average system response time, and average computing nodes utilizations. 
This improvement is clear for moderate system workload. When the system workload is heavy 
or light the performance of the three studied scheduling strategies converges. In the future, an 
extension to the proposed multi-class load balancing strategy to be able to deal with more 
complicated hierarchical models that reflect the real models will be studied  
 

6. Acknowledgments 
 

The authors would like to extend their sincere appreciation to the Deanship of Scientific 
Research at King Saud University for its funding of this research through Research Group 
Project RGP-VPP-229. 

References 
 [1] Fangpeng Dong and Selim G. Akl, “Scheduling Algorithms for Grid Computing: State of the Art 

and Open Problems,” Technical report, School of Computing, Queen's University Kingston, 
Ontario January 2006. 

 [2] S. F. El-Zoghdy, “A Hierarchical Load Balancing Policy For Grid Computing Environments,” 
International Journal of Computer Network and Information Security, Vol. 4, pp. 9-20, 2012. 
Article (CrossRef Link). 

http://dx.doi.org/10.5815/ijcnis.2012.05.01


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016                                        133 

 [3] S. F. El-Zoghdy, “A capacity-based load balancing and job migration algorithm for heterogeneous 
Computational grids,” International Journal of Computer Networks & Communications (IJCNC) 
Vol.4, No.1, pp. 113-125, 2012. Article (CrossRef Link). 

 [4] S. F. El-Zoghdy, H. Kameda, and J. Li, "A comparative study of static and dynamic individually 
optimal load balancing policies,” in Proc. of the IASTED Inter. Conf. on Networks, Parallel and 
Distributed Processing and Applications, pp. 200-205. 2002. Article (CrossRef Link) 

 [5] I. Foster and C. Kesselman (editors), " The Grid2: Blueprint for a New Computing Infrastructure,” 
Morgan Kaufmann Puplishers, 2nd edition, USA, 2004. 

 [6] K. Lu, R. Subrata, and A. Y. Zomaya, "On The Performance-Driven Load Distribution For 
Heterogeneous Computational Grids,” Journal of Computer and System Science, vol. 73, no. 8, pp. 
1191-1206, 2007. Article (CrossRef Link). 

 [7] Paritosh Kumar, "Load Balancing and Job Migration in Grid Environment,” MS. Thesis, 
THAPAR UNIVERSITY, 2009. 

 [8] K. Li, "Optimal load distribution in nondedicated heterogeneous cluster and grid computing 
environments,” Journal of Systems Architecture, vol. 54, pp. 111–123, 2008.  
Article (CrossRef Link). 

 [9] H. Kameda, J. Li, C. Kim, and Y. Zhang, "Optimal Load Balancing in Distributed Computer 
Systems,” Springer, London, 1997. Article (CrossRef Link). 

 [10] S. K. Goyal, "Adaptive and dynamic load balancing methodologies for distributed environment: a 
review,” International Journal of Engineering Science and Technology (IJEST), Vol. 3 No. 3, pp. 
1835-1840, 2011. 

 [11] B. Yagoubi and Y. Slimani, "Task Load Balancing Strategy for Grid Computing,” Journal of 
Computer Science, vol. 3, no. 3: pp. 186-194, 2007. Article (CrossRef Link). 

 [12] Xiao Qin, and Tao Xie," An Availability-Aware Task Scheduling Strategy for Heterogeneous 
Systems,” IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.  
Article (CrossRef Link). 

 [13] Eddy Caron, Vincent Garonne, and Andrei Tsaregorodtsev, “Definition, Modeling and simulation 
of a grid computing scheduling system for high throughput computing,” Future generation of 
computer systems, Vol. 23, pp.968-976, 2007. Article (CrossRef Link). 

 [14] Hameed Hussain, Saif Ur Rehman Malik, and others, "A survey on resource allocation in high 
performance distributed computing systems,” parallel computing, Vol. 39, pp. 709-736, 2013. 

 [15] Hameed Hussain, Saif Ur Rehman Malik, and others, "A survey on resource allocation in high 
performance distributed computing systems,” parallel computing, Vol. 39, pp. 709-736, 2013. 

 [16] Siu-Cheung Chau, and Ada Wai-Chee Fu, "Load Balancing between Computing Clusters,”  
Lecture Notes in Computer Science, Volume 3032, pp 75-82, 2004. Article (CrossRef Link). 

 [17] Ms. Nitika, Ms. Shaveta, Mr. Gaurav Raj, "Comparative Analysis of Load Balancing Algorithms 
in Cloud Computing,” International Journal of Advanced Research in Computer Engineering & 
Technology, Volume 1, Issue 3, May 2012. 

 [18] Amandeep Kaur Sidhu, and Supriya Kinger, "Analysis of Load Balancing Techniques in Cloud 
Computing,” International Journal of Computers & Technology,, Volume 4 No. 2, March-April, 
2013. 

 [19] Y. Fang, F. Wang, and J. Ge, "A Task Scheduling Algorithm Based on Load Balancing in Cloud 
Computing,” Web Information Systems and Mining, Lecture Notes in Computer Science, Vol. 
6318, 2010, pages 271-277. Article (CrossRef Link). 

 [20] Satish Penmatsa, and Anthony T. Chronopoulos, "Dynamic Multi-User Load Balancing in 
Distributed Systems," in Proc. of IEEE International Parallel and Distributed Processing 
Symposium, IPDPS 2007. 26-30 March 2007 Article (CrossRef Link). 

 [21] J. Sethuraman, and M. S. Squillante, "Optimal Stochastic Scheduling in Multiclass Parallel 
Queues,” in Proc. of ACM Sigmetric Conf., May 1999. Article (CrossRef Link). 

 [22] R. Buyya, "A grid simulation toolkit for resource modelling and application scheduling for 
parallel and distributed computing,” Article (CrossRef Link) 

http://dx.doi.org/10.5121/ijcnc.2012.4109
http://dx.doi.org/10.1049/ip-cdt:19970951
http://dx.doi.org/10.1016/j.jcss.2007.02.007
http://dx.doi.org/10.1016/j.sysarc.2007.04.003
http://dx.doi.org/10.1007/978-1-4471-0969-3
http://dx.doi.org/10.3844/jcssp.2007.186.194
http://dx.doi.org/10.1109/TC.2007.70738
http://dx.doi.org/10.1016/j.future.2007.04.008
http://dx.doi.org/10.1007/978-3-540-24679-4_19
http://dx.doi.org/10.1007/978-3-642-16515-3_34
http://dx.doi.org/10.1109/IPDPS.2007.370312
http://dx.doi.org/10.1145/301453.301483
http://www.buyya.com/gridsim/


134                                                                 El-Zoghdy and Ghoneim: A Multi-Class Task Scheduling Strategy 

 [23] Zikos, S., Karatza, H.D., 2008. "Resource allocation strategies in a 2-level hierarchical grid 
system,” in Proc. of the 41st Annual Simulation Symposium (ANSS), April 13–16, IEEE Computer 
Society Press, SCS, pp. 157–164, 2008. Article (CrossRef Link). 

 [24] Y. Li, Y. Yang, M. Ma, and L. Zhou, "A hybrid load balancing strategy of sequential jobs for grid 
computing Environments,” Future Generation Computer Systems, vol. 25, pp.) 819_828, 2009. 
Article (CrossRef Link) 

 [25] Malarvizhi Nandagopal and Rhymend V. Uthariaraj, "Hierarchical Status Information Exchange 
Scheduling and Load Balancing For Computational Grid Environments,” IJCSNS International 
Journal of Computer Science and Network Security, VOL.10 No.2, pp. 177-185, 2010. 

 [26] J. Balasangameshwara, N. Raju, "A Decentralized Recent Neighbour Load Balancing Algorithm 
for Computational Grid,” Int. J. of ACM Jordan, vol. 1,no. 3, pp. 128-133, 2010. 

 [27] E. Saravanakumar and P. Gomathy, "A novel load balancing algorithm for computational grid,” 
Int. J. of Computational Intelligence Techniques, vol. 1, no. 1, 2010. 

 [28] O. Beaumont, A. Legrand, L. Marchal and Y. Robert., "Steady-State Scheduling on 
Heterogeneous Clusters,” Int. J. of Foundations of Computer Science, Vol. 16, No.2,pp. 163-194, 
2005. Article (CrossRef Link). 

 [29] R. Sharma, V. K. Soni, M. K. Mishra, and P. Bhuyan, "A survey of job scheduling and resource 
management in grid computing,” World Academy of Science, Engineering and Technology, 64, 
pp.461-466, 2010. 

 [30] Grosu, D., and Chronopoulos, A.T.: "Noncooperative load balancing in distributed systems,” J. 
Parallel Distrib. Comput. 65(9), pp. 1022–1034, 2005. Article (CrossRef Link). 

 [31] Penmatsa, S., and Chronopoulos, A.T.: "Job allocation schemes in computational Grids based on 
cost optimization,’ in Proc. of 19th IEEE Inter. Parallel and Distributed Processing Symposium, 
Denver, 2005. Article (CrossRef Link). 

 [32] N.Malarvizhi, and V.Rhymend Uthariaraj, "A New Mechanism for Job Scheduling in 
Computational Grid Network Environments,” in Proc. of 5th Inter. Conference on Active Media 
Technology, vol. 5820 of Lecture Notes in Computer Science, Springer, pp. 490-500, 2009. 
Article (CrossRef Link). 

 [33] H. Johansson and J. Steensland, "A performance characterization of load balancing algorithms for 
parallel SAMR applications," Uppsala University, Department of Information Technology, Tech. 
Rep. 2006- 047, 2006. 

 [34] A. Touzene, S. Al Yahia, K.Day, B. Arafeh, "Load Balancing Grid Computing Middleware,” 
IASTED Inter. Conf. on Web Technologies, Applications, and Services, 2005. 

 [35] A. Touzene, H. Al Maqbali, "Analytical Model for Performance Evaluation of Load Balancing 
Algorithm for Grid Computing,” in Proc. of the 25th IASTED Inter. Multi-Conference: Parallel 
and Distributed Computing and Networks, pp. 98-102, 2007. 

 [36] N. Malarvizhi, and V.Rhymend Uthariaraj, "Hierarchical Load Balancing Scheme for 
Computational Intensive Jobs in Grid Computing Environment,” in Proc. of Int. Conf on 
Advanced Computing, India, Dec 2009, pp. 97-104. Article (CrossRef Link). 

 [37] C. K. Pushpendra, and S. Bibhudatta, "Dynamic load distribution algorithm performance in 
heterogeneous distributed system for I/O- intensive task,” TENCON 2008, IEEE Region 10 
Conference,19-21, pp.1 – 5, Nov. 2008. Article (CrossRef Link) 

 [38] Raj Jain, "The Art of Computer System Performance Analysis,” John Wiley & Sons, Inc, 1991. 
 [39] Y. ZHU, "A survey on grid scheduling systems,” Technical report, Department of Computer 

Science, Hong Kong University of Science and Technology, 2003. 
 [40] Jie Li, and Hisao Kameda, "Load Balancing Problems for Multiclass Jobs in Distributed/Parallel 

Computer Systems,” IEEE Trans. On Computers, Vol. 47, NO. 3,1998. Article (CrossRef Link) 
 [41] Zhao Tong, Zheng Xiao, Kenli Li, and Keqin Li," Proactive Scheduling In Distributed Computing 

– A Reinforcement Learning Approach,” J. Parallel Distrib. Comput., 2014 (In press). 
Article (CrossRef Link). 

 
 
 

http://dx.doi.org/10.1109/anss-41.2008.8
http://dx.doi.org/10.1016/j.future.2009.02.001
http://dx.doi.org/10.1142/S0129054105002930
http://dx.doi.org/10.1016/j.jpdc.2005.05.001
http://dx.doi.org/10.1109/IPDPS.2005.264
http://dx.doi.org/10.1007/978-3-642-04875-3_50
http://dx.doi.org/10.1109/icadvc.2009.5378268
http://dx.doi.org/10.1109/TENCON.2008.4766739
http://dx.doi.org/10.1109/12.660168
http://dx.doi.org/10.1016/j.jpdc.2014.03.007


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016                                        135 

 
 

 
 
 

S. F. Elzoghdy received the B.Sc. (Hons.), M.Sc., degrees in Computer Science from 
Faculty of Science, Menoufia University, Shebi El-kom, Egypt, in 1993, 1997, 
respectively. He awarded the PhD degree from Operating System & Distributed/Parallel 
Processing (OSDP) laboratory, Institute of Information Sciences and Electronics (IISE), 
University of Tsukuba, Tsukuba Science City, Japan in 2004. He is currently an 
Associated Prof. at the Mathematics and Computer Science Dept., Faculty of Science, 
Menoufia University. His current research interests include load balancing in distributed 
and parallel computer systems, modeling and simulation, grid computing load balancing, 
security and cryptography, design and analysis of parallel algorithms. 

 

Ahmed Ghoneim received his M.Sc. degree in software modeling from University of 
Menoufia, Egypt, and the Ph.D. degree from the University of Magdeburg (Germany) in 
the area of software engineering, in 1999 and 2007 respectively. He is currently an 
assistant professor at the department of software engineering, king Saud University. His 
research activities address software evolution; service oriented engineering, software 
development methodologies, Quality of Services, Net-Centric Computing, and Human 
Computer Interaction (HCI). 

 


