DOI QR코드

DOI QR Code

Structural MR Imaging in the Diagnosis of Alzheimer's Disease and Other Neurodegenerative Dementia: Current Imaging Approach and Future Perspectives

  • Park, Mina (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Moon, Won-Jin (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine)
  • Received : 2016.03.22
  • Accepted : 2016.06.26
  • Published : 2016.11.01

Abstract

With the rise of aging population, clinical concern and research attention has shifted towards neuroimaging of dementia. The advent of 3T, magnetic resonance imaging (MRI) has permitted the anatomical imaging of neurodegenerative disease, specifically dementia, with improved resolution. Furthermore, more powerful techniques such as diffusion tensor imaging, quantitative susceptibility mapping, and magnetic transfer imaging have successfully emerged for the detection of micro-structural abnormalities. In the present review article, we provide a brief overview of Alzheimer's disease and explore recent neuroimaging developments in the field of dementia with an emphasis on structural MR imaging in order to propose a simple and easily applicable systematic approach to the imaging diagnosis of dementia.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare, Konkuk University

References

  1. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, et al. 2014 Update of the Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 2015;11:e1-e120 https://doi.org/10.1016/j.jalz.2014.11.001
  2. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944 https://doi.org/10.1212/WNL.34.7.939
  3. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 1986;261:6084-6089
  4. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985;82:4245-4249 https://doi.org/10.1073/pnas.82.12.4245
  5. Braak H, Braak E. Neuropathological stageing of Alzheimerrelated changes. Acta Neuropathol 1991;82:239-259 https://doi.org/10.1007/BF00308809
  6. Jarrett JT, Berger EP, Lansbury PT Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 1993;32:4693-4697 https://doi.org/10.1021/bi00069a001
  7. Harrington CR. The molecular pathology of Alzheimer's disease. Neuroimaging Clin N Am 2012;22:11-22, vii https://doi.org/10.1016/j.nic.2011.11.003
  8. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010;9:119-128 https://doi.org/10.1016/S1474-4422(09)70299-6
  9. Braak H, Del Tredici K. The pathological process underlying Alzheimer's disease in individuals under thirty. Acta Neuropathol 2011;121:171-181 https://doi.org/10.1007/s00401-010-0789-4
  10. Bloom GS. Amyloid-$\beta$ and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 2014;71:505-508 https://doi.org/10.1001/jamaneurol.2013.5847
  11. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004;256:183-194 https://doi.org/10.1111/j.1365-2796.2004.01388.x
  12. Roberts RO, Geda YE, Knopman DS, Cha RH, Pankratz VS, Boeve BF, et al. The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology 2008;30:58-69 https://doi.org/10.1159/000115751
  13. Petersen RC, Roberts RO, Knopman DS, Geda YE, Cha RH, Pankratz VS, et al. Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology 2010;75:889-897 https://doi.org/10.1212/WNL.0b013e3181f11d85
  14. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild cognitive impairment: ten years later. Arch Neurol 2009;66:1447-1455
  15. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:257-262 https://doi.org/10.1016/j.jalz.2011.03.004
  16. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:270-279 https://doi.org/10.1016/j.jalz.2011.03.008
  17. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol 2014;13:614-629 https://doi.org/10.1016/S1474-4422(14)70090-0
  18. Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010;6:67-77
  19. Harper L, Barkhof F, Scheltens P, Schott JM, Fox NC. An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry 2014;85:692-698 https://doi.org/10.1136/jnnp-2013-306285
  20. Price JL, Davis PB, Morris JC, White DL. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer's disease. Neurobiol Aging 1991;12:295-312 https://doi.org/10.1016/0197-4580(91)90006-6
  21. Jack CR Jr, Dickson DW, Parisi JE, Xu YC, Cha RH, O'Brien PC, et al. Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 2002;58:750-757 https://doi.org/10.1212/WNL.58.5.750
  22. Pasquier F, Leys D, Weerts JG, Mounier-Vehier F, Barkhof F, Scheltens P. Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol 1996;36:268-272 https://doi.org/10.1159/000117270
  23. Wattjes MP, Henneman WJ, van der Flier WM, de Vries O, Traber F, Geurts JJ, et al. Diagnostic imaging of patients in a memory clinic: comparison of MR imaging and 64-detector row CT. Radiology 2009;253:174-183 https://doi.org/10.1148/radiol.2531082262
  24. Henneman WJ, Sluimer JD, Cordonnier C, Baak MM, Scheltens P, Barkhof F, et al. MRI biomarkers of vascular damage and atrophy predicting mortality in a memory clinic population. Stroke 2009;40:492-498 https://doi.org/10.1161/STROKEAHA.108.516286
  25. Harper L, Barkhof F, Fox NC, Schott JM. Using visual rating to diagnose dementia: a critical evaluation of MRI atrophy scales. J Neurol Neurosurg Psychiatry 2015;86:1225-1233 https://doi.org/10.1136/jnnp-2014-310090
  26. O'Donovan J, Watson R, Colloby SJ, Firbank MJ, Burton EJ, Barber R, et al. Does posterior cortical atrophy on MRI discriminate between Alzheimer's disease, dementia with Lewy bodies, and normal aging? Int Psychogeriatr 2013;25:111-119 https://doi.org/10.1017/S1041610212001214
  27. De Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, et al. Frequency of hippocampal formation atrophy in normal aging and Alzheimer's disease. Neurobiol Aging 1997;18:1-11 https://doi.org/10.1016/S0197-4580(96)00213-8
  28. Gosche KM, Mortimer JA, Smith CD, Markesbery WR, Snowdon DA. Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology 2002;58:1476-1482 https://doi.org/10.1212/WNL.58.10.1476
  29. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992;55:967-972 https://doi.org/10.1136/jnnp.55.10.967
  30. Vermersch P, Leys D, Scheltens P, Barkhof F. Visual rating of hippocampal atrophy: correlation with volumetry. J Neurol Neurosurg Psychiatry 1994;57:1015
  31. DeCarli C, Kaye JA, Horwitz B, Rapoport SI. Critical analysis of the use of computer-assisted transverse axial tomography to study human brain in aging and dementia of the Alzheimer type. Neurology 1990;40:872-883 https://doi.org/10.1212/WNL.40.6.872
  32. Scheltens P, Launer LJ, Barkhof F, Weinstein HC, van Gool WA. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 1995;242:557-560 https://doi.org/10.1007/BF00868807
  33. Cavallin L, Loken K, Engedal K, Oksengård AR, Wahlund LO, Bronge L, et al. Overtime reliability of medial temporal lobe atrophy rating in a clinical setting. Acta Radiol 2012;53:318-323 https://doi.org/10.1258/ar.2012.110552
  34. Duara R, Loewenstein DA, Potter E, Appel J, Greig MT, Urs R, et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 2008;71:1986-1992 https://doi.org/10.1212/01.wnl.0000336925.79704.9f
  35. Urs R, Potter E, Barker W, Appel J, Loewenstein DA, Zhao W, et al. Visual rating system for assessing magnetic resonance images: a tool in the diagnosis of mild cognitive impairment and Alzheimer disease. J Comput Assist Tomogr 2009;33:73-78 https://doi.org/10.1097/RCT.0b013e31816373d8
  36. Kim GH, Kim JE, Choi KG, Lim SM, Lee JM, Na DL, et al. T1-weighted axial visual rating scale for an assessment of medial temporal atrophy in Alzheimer's disease. J Alzheimers Dis 2014;41:169-178 https://doi.org/10.3233/JAD-132333
  37. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734-746 https://doi.org/10.1016/S1474-4422(07)70178-3
  38. Lehmann M, Koedam EL, Barnes J, Bartlett JW, Ryan NS, Pijnenburg YA, et al. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologicallyconfirmed Alzheimer's disease. Neurobiol Aging 2012;33:627.e1-627.e12 https://doi.org/10.1016/j.neurobiolaging.2011.04.003
  39. Josephs KA, Whitwell JL, Duffy JR, Vanvoorst WA, Strand EA, Hu WT, et al. Progressive aphasia secondary to Alzheimer disease vs FTLD pathology. Neurology 2008;70:25-34 https://doi.org/10.1212/01.wnl.0000287073.12737.35
  40. Whitwell JL, Jack CR Jr, Przybelski SA, Parisi JE, Senjem ML, Boeve BF, et al. Temporoparietal atrophy: a marker of AD pathology independent of clinical diagnosis. Neurobiol Aging 2011;32:1531-1541 https://doi.org/10.1016/j.neurobiolaging.2009.10.012
  41. Frisoni GB, Pievani M, Testa C, Sabattoli F, Bresciani L, Bonetti M, et al. The topography of grey matter involvement in early and late onset Alzheimer's disease. Brain 2007;130(Pt 3):720-730 https://doi.org/10.1093/brain/awl377
  42. Koedam EL, Lehmann M, van der Flier WM, Scheltens P, Pijnenburg YA, Fox N, et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 2011;21:2618-2625 https://doi.org/10.1007/s00330-011-2205-4
  43. Möller C, van der Flier WM, Versteeg A, Benedictus MR, Wattjes MP, Koedam EL, et al. Quantitative regional validation of the visual rating scale for posterior cortical atrophy. Eur Radiol 2014;24:397-404 https://doi.org/10.1007/s00330-013-3025-5
  44. Broe M, Hodges JR, Schofield E, Shepherd CE, Kril JJ, Halliday GM. Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 2003;60:1005-1011 https://doi.org/10.1212/01.WNL.0000052685.09194.39
  45. Davies RR, Kipps CM, Mitchell J, Kril JJ, Halliday GM, Hodges JR. Progression in frontotemporal dementia: identifying a benign behavioral variant by magnetic resonance imaging. Arch Neurol 2006;63:1627-1631 https://doi.org/10.1001/archneur.63.11.1627
  46. Kipps CM, Davies RR, Mitchell J, Kril JJ, Halliday GM, Hodges JR. Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dement Geriatr Cogn Disord 2007;23:334-342 https://doi.org/10.1159/000100973
  47. Warrington EK. The selective impairment of semantic memory. Q J Exp Psychol 1975;27:635-657 https://doi.org/10.1080/14640747508400525
  48. Chan D, Fox NC, Scahill RI, Crum WR, Whitwell JL, Leschziner G, et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol 2001;49:433-442 https://doi.org/10.1002/ana.92
  49. Kitagaki H, Hirono N, Ishii K, Mori E. Corticobasal degeneration: evaluation of cortical atrophy by means of hemispheric surface display generated with MR images. Radiology 2000;216:31-38 https://doi.org/10.1148/radiology.216.1.r00ma0531
  50. Bugiani O, Constantinidis J, Ghetti B, Bouras C, Tagliavini F. Asymmetrical cerebral atrophy in Alzheimer's disease. Clin Neuropathol 1991;10:55-60
  51. Giannakopoulos P, Hof PR, Bouras C. Alzheimer's disease with asymmetric atrophy of the cerebral hemispheres: morphometric analysis of four cases. Acta Neuropathol 1994;88:440-447 https://doi.org/10.1007/BF00389496
  52. Whitwell JL, Josephs KA, Murray ME, Kantarci K, Przybelski SA, Weigand SD, et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 2008;71:743-749 https://doi.org/10.1212/01.wnl.0000324924.91351.7d
  53. Moon Y, Moon WJ, Kim H, Han SH. Regional atrophy of the insular cortex is associated with neuropsychiatric symptoms in Alzheimer's disease patients. Eur Neurol 2014;71:223-229 https://doi.org/10.1159/000356343
  54. Moon WJ, Kim HJ, Roh HG, Han SH. Atrophy measurement of the anterior commissure and substantia innominata with 3T high-resolution MR imaging: does the measurement differ for patients with frontotemporal lobar degeneration and Alzheimer disease and for healthy subjects? AJNR Am J Neuroradiol 2008;29:1308-1313 https://doi.org/10.3174/ajnr.A1103
  55. Fox NC, Scahill RI, Crum WR, Rossor MN. Correlation between rates of brain atrophy and cognitive decline in AD. Neurology 1999;52:1687-1689 https://doi.org/10.1212/WNL.52.8.1687
  56. Petrella JR. Neuroimaging and the search for a cure for Alzheimer disease. Radiology 2013;269:671-691 https://doi.org/10.1148/radiol.13122503
  57. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex 2004;14:11-22 https://doi.org/10.1093/cercor/bhg087
  58. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:341-355 https://doi.org/10.1016/S0896-6273(02)00569-X
  59. Brickman AM, Muraskin J, Zimmerman ME. Structural neuroimaging in Altheimer's disease: do white matter hyperintensities matter? Dialogues Clin Neurosci 2009;11:181-190
  60. Gunning-Dixon FM, Brickman AM, Cheng JC, Alexopoulos GS. Aging of cerebral white matter: a review of MRI findings. Int J Geriatr Psychiatry 2009;24:109-117 https://doi.org/10.1002/gps.2087
  61. Kim HJ, Moon WJ, Han SH. Differential cholinergic pathway involvement in Alzheimer's disease and subcortical ischemic vascular dementia. J Alzheimers Dis 2013;35:129-136
  62. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol 1987;149:351-356 https://doi.org/10.2214/ajr.149.2.351
  63. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822-838 https://doi.org/10.1016/S1474-4422(13)70124-8
  64. Galluzzi S, Lanni C, Pantoni L, Filippi M, Frisoni GB. White matter lesions in the elderly: pathophysiological hypothesis on the effect on brain plasticity and reserve. J Neurol Sci 2008;273:3-9 https://doi.org/10.1016/j.jns.2008.06.023
  65. Kanekar S, Poot JD. Neuroimaging of vascular dementia. Radiol Clin North Am 2014;52:383-401 https://doi.org/10.1016/j.rcl.2013.11.004
  66. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993;43:1683-1689 https://doi.org/10.1212/WNL.43.9.1683
  67. Chimowitz MI, Estes ML, Furlan AJ, Awad IA. Further observations on the pathology of subcortical lesions identified on magnetic resonance imaging. Arch Neurol 1992;49:747-752 https://doi.org/10.1001/archneur.1992.00530310095018
  68. Munoz DG, Hastak SM, Harper B, Lee D, Hachinski VC. Pathologic correlates of increased signals of the centrum ovale on magnetic resonance imaging. Arch Neurol 1993;50:492-497 https://doi.org/10.1001/archneur.1993.00540050044013
  69. Bronge L, Bogdanovic N, Wahlund LO. Postmortem MRI and histopathology of white matter changes in Alzheimer brains. A quantitative, comparative study. Dement Geriatr Cogn Disord 2002;13:205-212 https://doi.org/10.1159/000057698
  70. Scarpelli M, Salvolini U, Diamanti L, Montironi R, Chiaromoni L, Maricotti M. MRI and pathological examination of postmortem brains: the problem of white matter high signal areas. Neuroradiology 1994;36:393-398 https://doi.org/10.1007/BF00612126
  71. Marshall VG, Bradley WG Jr, Marshall CE, Bhoopat T, Rhodes RH. Deep white matter infarction: correlation of MR imaging and histopathologic findings. Radiology 1988;167:517-522 https://doi.org/10.1148/radiology.167.2.3357964
  72. Leys D, Bombois S. White matter hyperintensities: a target for the prevention of cognitive decline? J Neurol Neurosurg Psychiatry 2005;76:1185-1186 https://doi.org/10.1136/jnnp.2005.064766
  73. Garde E, Lykke Mortensen E, Rostrup E, Paulson OB. Decline in intelligence is associated with progression in white matter hyperintensity volume. J Neurol Neurosurg Psychiatry 2005;76:1289-1291 https://doi.org/10.1136/jnnp.2004.055905
  74. De Groot JC, De Leeuw FE, Oudkerk M, Van Gijn J, Hofman A, Jolles J, et al. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann Neurol 2002;52:335-341 https://doi.org/10.1002/ana.10294
  75. Prins ND, van Dijk EJ, den Heijer T, Vermeer SE, Jolles J, Koudstaal PJ, et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain 2005;128(Pt 9):2034-2041 https://doi.org/10.1093/brain/awh553
  76. Brickman AM, Zahodne LB, Guzman VA, Narkhede A, Meier IB, Griffith EY, et al. Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts Alzheimer's disease incidence. Neurobiol Aging 2015;36:27-32 https://doi.org/10.1016/j.neurobiolaging.2014.07.019
  77. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 2003;348:1215-1222 https://doi.org/10.1056/NEJMoa022066
  78. Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 2006;37:1391-1398 https://doi.org/10.1161/01.STR.0000221308.94473.14
  79. Englund E. Neuropathology of white matter changes in Alzheimer's disease and vascular dementia. Dement Geriatr Cogn Disord 1998;9 Suppl 1:6-12 https://doi.org/10.1159/000051183
  80. Kalaria RN, Akinyemi R, Ihara M. Does vascular pathology contribute to Alzheimer changes? J Neurol Sci 2012;322:141-147 https://doi.org/10.1016/j.jns.2012.07.032
  81. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001;32:1318-1322 https://doi.org/10.1161/01.STR.32.6.1318
  82. Fazekas F, Barkhof F, Wahlund LO, Pantoni L, Erkinjuntti T, Scheltens P, et al. CT and MRI rating of white matter lesions. Cerebrovasc Dis 2002;13 Suppl 2:31-36
  83. Noh Y, Lee Y, Seo SW, Jeong JH, Choi SH, Back JH, et al. A new classification system for ischemia using a combination of deep and periventricular white matter hyperintensities. J Stroke Cerebrovasc Dis 2014;23:636-642 https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.06.002
  84. Kapeller P, Barber R, Vermeulen RJ, Ader H, Scheltens P, Freidl W, et al. Visual rating of age-related white matter changes on magnetic resonance imaging: scale comparison, interrater agreement, and correlations with quantitative measurements. Stroke 2003;34:441-445 https://doi.org/10.1161/01.STR.0000049766.26453.E9
  85. Prins ND, van Straaten EC, van Dijk EJ, Simoni M, van Schijndel RA, Vrooman HA, et al. Measuring progression of cerebral white matter lesions on MRI: visual rating and volumetrics. Neurology 2004;62:1533-1539 https://doi.org/10.1212/01.WNL.0000123264.40498.B6
  86. Gouw AA, van der Flier WM, van Straaten EC, Pantoni L, Bastos-Leite AJ, Inzitari D, et al. Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression. Cerebrovasc Dis 2008;25:247-253 https://doi.org/10.1159/000113863
  87. Fisher CM. Lacunar infarcts-a review. Cerebrovasc Dis 1991;1:311-320 https://doi.org/10.1159/000108861
  88. Kovacs KR, Czuriga D, Bereczki D, Bornstein NM, Csiba L. Silent brain infarction--a review of recent observations. Int J Stroke 2013;8:334-347 https://doi.org/10.1111/j.1747-4949.2012.00851.x
  89. Bokura H, Kobayashi S, Yamaguchi S. Distinguishing silent lacunar infarction from enlarged Virchow-Robin spaces: a magnetic resonance imaging and pathological study. J Neurol 1998;245:116-122 https://doi.org/10.1007/s004150050189
  90. Jungreis CA, Kanal E, Hirsch WL, Martinez AJ, Moossy J. Normal perivascular spaces mimicking lacunar infarction: MR imaging. Radiology 1988;169:101-104 https://doi.org/10.1148/radiology.169.1.3420242
  91. Sachdev P, Kalaria R, O'Brien J, Skoog I, Alladi S, Black SE, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord 2014;28:206-218 https://doi.org/10.1097/WAD.0000000000000034
  92. Choi P, Ren M, Phan TG, Callisaya M, Ly JV, Beare R, et al. Silent infarcts and cerebral microbleeds modify the associations of white matter lesions with gait and postural stability: population-based study. Stroke 2012;43:1505-1510 https://doi.org/10.1161/STROKEAHA.111.647271
  93. Vermeer SE, Hollander M, van Dijk EJ, Hofman A, Koudstaal PJ, Breteler MM; Rotterdam Scan Study. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke 2003;34:1126-1129 https://doi.org/10.1161/01.STR.0000068408.82115.D2
  94. Barber R, Scheltens P, Gholkar A, Ballard C, McKeith I, Ince P, et al. White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer's disease, vascular dementia, and normal aging. J Neurol Neurosurg Psychiatry 1999;67:66-72 https://doi.org/10.1136/jnnp.67.1.66
  95. Jellinger KA, Mitter-Ferstl E. The impact of cerebrovascular lesions in Alzheimer disease--a comparative autopsy study. J Neurol 2003;250:1050-1055 https://doi.org/10.1007/s00415-003-0142-0
  96. Neuropathology Group. Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 2001;357:169-175 https://doi.org/10.1016/S0140-6736(00)03589-3
  97. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 1997;277:813-817 https://doi.org/10.1001/jama.1997.03540340047031
  98. Gold G, Kövari E, Herrmann FR, Canuto A, Hof PR, Michel JP, et al. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia. Stroke 2005;36:1184-1188 https://doi.org/10.1161/01.STR.0000166052.89772.b5
  99. Vermeer SE, Longstreth WT Jr, Koudstaal PJ. Silent brain infarcts: a systematic review. Lancet Neurol 2007;6:611-619 https://doi.org/10.1016/S1474-4422(07)70170-9
  100. Yates PA, Villemagne VL, Ellis KA, Desmond PM, Masters CL, Rowe CC. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front Neurol 2014;4:205
  101. Akter M, Hirai T, Hiai Y, Kitajima M, Komi M, Murakami R, et al. Detection of hemorrhagic hypointense foci in the brain on susceptibility-weighted imaging clinical and phantom studies. Acad Radiol 2007;14:1011-1019 https://doi.org/10.1016/j.acra.2007.05.013
  102. Atlas SW, Mark AS, Grossman RI, Gomori JM. Intracranial hemorrhage: gradient-echo MR imaging at 1.5 T. Comparison with spin-echo imaging and clinical applications. Radiology 1988;168:803-807 https://doi.org/10.1148/radiology.168.3.3406410
  103. Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637-642
  104. Shoamanesh A, Kwok CS, Benavente O. Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc Dis 2011;32:528-534 https://doi.org/10.1159/000331466
  105. Poels MM, Vernooij MW, Ikram MA, Hofman A, Krestin GP, van der Lugt A, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke 2010;41(10 Suppl):S103-S106 https://doi.org/10.1161/STROKEAHA.110.595181
  106. Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008;70:1208-1214 https://doi.org/10.1212/01.wnl.0000307750.41970.d9
  107. Pettersen JA, Sathiyamoorthy G, Gao FQ, Szilagyi G, Nadkarni NK, St George-Hyslop P, et al. Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Arch Neurol 2008;65:790-795
  108. Seo SW, Lee BH, Kim EJ, Chin J, Cho YS, Yoon U, et al. Clinical significance of microbleeds in subcortical vascular dementia. Stroke 2007;38:1949-1951 https://doi.org/10.1161/STROKEAHA.106.477315
  109. Goos JD, Teunissen CE, Veerhuis R, Verwey NA, Barkhof F, Blankenstein MA, et al. Microbleeds relate to altered amyloid-${\beta}$ metabolism in Alzheimer's disease. Neurobiol Aging 2012;33:1011.e1-e9 https://doi.org/10.1016/j.neurobiolaging.2011.10.026
  110. Haller S, Bartsch A, Nguyen D, Rodriguez C, Emch J, Gold G, et al. Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment. Radiology 2010;257:764-773 https://doi.org/10.1148/radiol.10100612
  111. Werring DJ, Gregoire SM, Cipolotti L. Cerebral microbleeds and vascular cognitive impairment. J Neurol Sci 2010;299:131-135 https://doi.org/10.1016/j.jns.2010.08.034
  112. Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001;56:537-539 https://doi.org/10.1212/WNL.56.4.537
  113. Barakos J, Sperling R, Salloway S, Jack C, Gass A, Fiebach JB, et al. MR imaging features of amyloid-related imaging abnormalities. AJNR Am J Neuroradiol 2013;34:1958-1965 https://doi.org/10.3174/ajnr.A3500
  114. Cordonnier C, Potter GM, Jackson CA, Doubal F, Keir S, Sudlow CL, et al. Improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS). Stroke 2009;40:94-99 https://doi.org/10.1161/STROKEAHA.108.526996
  115. Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, Warach S, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165-174 https://doi.org/10.1016/S1474-4422(09)70013-4
  116. Vernooij MW, Ikram MA, Wielopolski PA, Krestin GP, Breteler MM, van der Lugt A. Cerebral microbleeds: accelerated 3D T2*-weighted GRE MR imaging versus conventional 2D T2*-weighted GRE MR imaging for detection. Radiology 2008;248:272-277 https://doi.org/10.1148/radiol.2481071158
  117. Nandigam RN, Viswanathan A, Delgado P, Skehan ME, Smith EE, Rosand J, et al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009;30:338-343 https://doi.org/10.3174/ajnr.A1355
  118. Ayaz M, Boikov AS, Haacke EM, Kido DK, Kirsch WM. Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. J Magn Reson Imaging 2010;31:142-148 https://doi.org/10.1002/jmri.22001
  119. Cheng AL, Batool S, McCreary CR, Lauzon ML, Frayne R, Goyal M, et al. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Stroke 2013;44:2782-2786 https://doi.org/10.1161/STROKEAHA.113.002267
  120. Smith EE, Schneider JA, Wardlaw JM, Greenberg SM. Cerebral microinfarcts: the invisible lesions. Lancet Neurol 2012;11:272-282 https://doi.org/10.1016/S1474-4422(11)70307-6
  121. Brayne C, Richardson K, Matthews FE, Fleming J, Hunter S, Xuereb JH, et al. Neuropathological correlates of dementia in over-80-year-old brain donors from the population-based Cambridge city over-75s cohort (CC75C) study. J Alzheimers Dis 2009;18:645-658 https://doi.org/10.3233/JAD-2009-1182
  122. Brundel M, de Bresser J, van Dillen JJ, Kappelle LJ, Biessels GJ. Cerebral microinfarcts: a systematic review of neuropathological studies. J Cereb Blood Flow Metab 2012;32:425-436 https://doi.org/10.1038/jcbfm.2011.200
  123. van Veluw SJ, Zwanenburg JJ, Engelen-Lee J, Spliet WG, Hendrikse J, Luijten PR, et al. In vivo detection of cerebral cortical microinfarcts with high-resolution 7T MRI. J Cereb Blood Flow Metab 2013;33:322-329 https://doi.org/10.1038/jcbfm.2012.196
  124. van Rooden S, Goos JD, van Opstal AM, Versluis MJ, Webb AG, Blauw GJ, et al. Increased number of microinfarcts in Alzheimer disease at 7-T MR imaging. Radiology 2014;270:205-211 https://doi.org/10.1148/radiol.13130743
  125. Haller S, Garibotto V, Kövari E, Bouras C, Xekardaki A, Rodriguez C, et al. Neuroimaging of dementia in 2013: what radiologists need to know. Eur Radiol 2013;23:3393-3404 https://doi.org/10.1007/s00330-013-2957-0
  126. Quattrone A, Nicoletti G, Messina D, Fera F, Condino F, Pugliese P, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 2008;246:214-221 https://doi.org/10.1148/radiol.2453061703
  127. Sasaki M, Honda S, Yuasa T, Iwamura A, Shibata E, Ohba H. Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology 2008;50:117-122 https://doi.org/10.1007/s00234-007-0318-x
  128. Kandiah N, Tan K, Pan AB, Au WL, Venketasubramanian N, Tchoyoson Lim CC, et al. Creutzfeldt-Jakob disease: which diffusion-weighted imaging abnormality is associated with periodic EEG complexes? J Neurol 2008;255:1411-1414 https://doi.org/10.1007/s00415-008-0934-3
  129. Jack CR Jr. Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 2012;263:344-361 https://doi.org/10.1148/radiol.12110433
  130. Zhang Y, Schuff N, Jahng GH, Bayne W, Mori S, Schad L, et al. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology 2007;68:13-19 https://doi.org/10.1212/01.wnl.0000250326.77323.01
  131. Agosta F, Pievani M, Sala S, Geroldi C, Galluzzi S, Frisoni GB, et al. White matter damage in Alzheimer disease and its relationship to gray matter atrophy. Radiology 2011;258:853-863 https://doi.org/10.1148/radiol.10101284
  132. Kantarci K, Petersen RC, Boeve BF, Knopman DS, Weigand SD, O'Brien PC, et al. DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 2005;64:902-904 https://doi.org/10.1212/01.WNL.0000153076.46126.E9
  133. Fellgiebel A, Muller MJ, Wille P, Dellani PR, Scheurich A, Schmidt LG, et al. Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiol Aging 2005;26:1193-1198 https://doi.org/10.1016/j.neurobiolaging.2004.11.006
  134. Moon Y, Moon WJ, Kwon H, Lee JM, Han SH. Vitamin D deficiency disrupts neuronal integrity in cognitively impaired patients. J Alzheimers Dis 2015;45:1089-1096
  135. Ke Y, Ming Qian Z. Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol 2003;2:246-253 https://doi.org/10.1016/S1474-4422(03)00353-3
  136. Moon WJ, Kim HJ, Roh HG, Choi JW, Han SH. Fluidattenuated inversion recovery hypointensity of the pulvinar nucleus of patients with Alzheimer disease: its possible association with iron accumulation as evidenced by the t2(*) map. Korean J Radiol 2012;13:674-683 https://doi.org/10.3348/kjr.2012.13.6.674
  137. Connor JR, Menzies SL, St Martin SM, Mufson EJ. A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. J Neurosci Res 1992;31:75-83 https://doi.org/10.1002/jnr.490310111
  138. Good PF, Perl DP, Bierer LM, Schmeidler J. Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer's disease: a laser microprobe (LAMMA) study. Ann Neurol 1992;31:286-292 https://doi.org/10.1002/ana.410310310
  139. Leskovjan AC, Kretlow A, Lanzirotti A, Barrea R, Vogt S, Miller LM. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer's disease. Neuroimage 2011;55:32-38 https://doi.org/10.1016/j.neuroimage.2010.11.073
  140. Acosta-Cabronero J, Williams GB, Cardenas-Blanco A, Arnold RJ, Lupson V, Nestor PJ. In vivo quantitative susceptibility mapping (QSM) in Alzheimer's disease. PLoS One 2013;8:e81093 https://doi.org/10.1371/journal.pone.0081093
  141. Moon Y, Han SH, Moon WJ. Patterns of brain iron accumulation in vascular dementia and Alzheimer's dementia using quantitative susceptibility mapping imaging. J Alzheimers Dis 2016;51:737-745 https://doi.org/10.3233/JAD-151037
  142. Ramani A, Jensen JH, Helpern JA. Quantitative MR imaging in Alzheimer disease. Radiology 2006;241:26-44 https://doi.org/10.1148/radiol.2411050628
  143. Moon WJ, Park JY, Yun WS, Jeon JY, Moon YS, Kim H, et al. A comparison of substantia nigra T1 hyperintensity in Parkinson's disease dementia, Alzheimer's disease and agematched controls: volumetric analysis of neuromelanin imaging. Korean J Radiol 2016;17:633-640 https://doi.org/10.3348/kjr.2016.17.5.633
  144. Hanyu H, Asano T, Iwamoto T, Takasaki M, Shindo H, Abe K. Magnetization transfer measurements of the hippocampus in patients with Alzheimer's disease, vascular dementia, and other types of dementia. AJNR Am J Neuroradiol 2000;21:1235-1242
  145. Wiest R, Burren Y, Hauf M, Schroth G, Pruessner J, Zbinden M, et al. Classification of mild cognitive impairment and Alzheimer disease using model-based MR and magnetization transfer imaging. AJNR Am J Neuroradiol 2013;34:740-746 https://doi.org/10.3174/ajnr.A3307
  146. Kim SJ, Choi CG, Kim JK, Yun SC, Jahng GH, Jeong HK, et al. Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: evaluation using a diffusional anisotropic phantom. Korean J Radiol 2015;16:297-303 https://doi.org/10.3348/kjr.2015.16.2.297
  147. Yao X, Yu T, Liang B, Xia T, Huang Q, Zhuang S. Effect of increasing diffusion gradient direction number on diffusion tensor imaging fiber tracking in the human brain. Korean J Radiol 2015;16:410-418 https://doi.org/10.3348/kjr.2015.16.2.410
  148. Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 2008;27:685-691 https://doi.org/10.1002/jmri.21049

Cited by

  1. Thyroid Disrupting Chemicals vol.18, pp.12, 2017, https://doi.org/10.3390/ijms18122583
  2. In Vivo Assessment of Neurodegeneration in Type C Niemann-Pick Disease by IDEAL-IQ vol.19, pp.1, 2016, https://doi.org/10.3348/kjr.2018.19.1.93
  3. Factors influencing accuracy of cortical thickness in the diagnosis of Alzheimer's disease vol.39, pp.4, 2018, https://doi.org/10.1002/hbm.23922
  4. Global Cerebral Atrophy Detected by Routine Imaging: Relationship with Age, Hippocampal Atrophy, and White Matter Hyperintensities vol.28, pp.3, 2018, https://doi.org/10.1111/jon.12494
  5. Validation of a prototype tau Thr231 phosphorylation CSF ELISA as a potential biomarker for Alzheimer’s disease vol.126, pp.3, 2016, https://doi.org/10.1007/s00702-019-01982-5
  6. Neuroimaging techniques for diagnosing Alzheimer’s disease and cerebrovascular diseases with cognitive impairment vol.11, pp.3, 2016, https://doi.org/10.14412/2074-2711-2019-3s-18-25
  7. Prediction of clinical and biomarker conformed Alzheimer’s disease and mild cognitive impairment from multi-feature brain structural MRI using age-correction from a large independent lifespan sa vol.28, pp.None, 2016, https://doi.org/10.1016/j.nicl.2020.102387
  8. Clinically Available Software for Automatic Brain Volumetry: Comparisons of Volume Measurements and Validation of Intermethod Reliability vol.21, pp.None, 2016, https://doi.org/10.3348/kjr.2020.0518
  9. Evaluation of single molecule array digital immunoassay technology to quantitate neurofilament light chain vol.12, pp.4, 2016, https://doi.org/10.4155/bio-2019-0221
  10. Alzheimer Dementia and Microvascular Pathology: Blood-Brain Barrier Permeability Imaging vol.81, pp.3, 2020, https://doi.org/10.3348/jksr.2020.81.3.488
  11. Comparison of Vendor-Provided Volumetry Software and NeuroQuant Using 3D T1-Weighted Images in Subjects with Cognitive Impairment: How Large is the Inter-Method Discrepancy? vol.24, pp.2, 2016, https://doi.org/10.13104/imri.2020.24.2.76
  12. A comparison of resting state EEG and structural MRI for classifying Alzheimer’s disease and mild cognitive impairment vol.215, pp.None, 2020, https://doi.org/10.1016/j.neuroimage.2020.116795
  13. Voxelwise Meta-Analysis of Gray Matter Abnormalities in Mild Cognitive Impairment and Subjective Cognitive Decline Using Activation Likelihood Estimation vol.77, pp.4, 2016, https://doi.org/10.3233/jad-200659
  14. Comparison of Automated Brain Volume Measures by NeuroQuant vs. Freesurfer in Patients with Mild Cognitive Impairment: Effect of Slice Thickness vol.62, pp.3, 2016, https://doi.org/10.3349/ymj.2021.62.3.255
  15. Development of Random Forest Algorithm Based Prediction Model of Alzheimer’s Disease Using Neurodegeneration Pattern vol.18, pp.1, 2016, https://doi.org/10.30773/pi.2020.0304
  16. Predicting Amyloid Pathology in Mild Cognitive Impairment Using Radiomics Analysis of Magnetic Resonance Imaging vol.79, pp.2, 2016, https://doi.org/10.3233/jad-200734
  17. Lack of association between proton pump inhibitor use and brain aging: a cross-sectional study vol.77, pp.7, 2016, https://doi.org/10.1007/s00228-020-03068-8
  18. Contribution of Graph Theory Applied to EEG Data Analysis for Alzheimer’s Disease Versus Vascular Dementia Diagnosis vol.82, pp.2, 2021, https://doi.org/10.3233/jad-210394