Acknowledgement
Supported by : Ministry of Health & Welfare
References
- Zecca L, Tampellini D, Gerlach M, Riederer P, Fariello RG, Sulzer D. Substantia nigra neuromelanin: structure, synthesis, and molecular behaviour. Mol Pathol 2001;54:414-418
- Double KL, Ben-Shachar D, Youdim MB, Zecca L, Riederer P, Gerlach M. Influence of neuromelanin on oxidative pathways within the human substantia nigra. Neurotoxicol Teratol 2002;24:621-628 https://doi.org/10.1016/S0892-0362(02)00218-0
- Zecca L, Zucca FA, Wilms H, Sulzer D. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 2003;26:578-580 https://doi.org/10.1016/j.tins.2003.08.009
- Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, et al. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease. Neuroreport 2006;17:1215-1218 https://doi.org/10.1097/01.wnr.0000227984.84927.a7
- Sasaki M, Shibata E, Tohyama K, Kudo K, Endoh J, Otsuka K, et al. Monoamine neurons in the human brain stem: anatomy, magnetic resonance imaging findings, and clinical implications. Neuroreport 2008;19:1649-1654 https://doi.org/10.1097/WNR.0b013e328315a637
- Matsuura K, Maeda M, Yata K, Ichiba Y, Yamaguchi T, Kanamaru K, et al. Neuromelanin magnetic resonance imaging in Parkinson's disease and multiple system atrophy. Eur Neurol 2013;70:70-77 https://doi.org/10.1159/000350291
- Ohtsuka C, Sasaki M, Konno K, Kato K, Takahashi J, Yamashita F, et al. Differentiation of early-stage parkinsonisms using neuromelanin-sensitive magnetic resonance imaging. Parkinsonism Relat Disord 2014;20:755-760 https://doi.org/10.1016/j.parkreldis.2014.04.005
- Kashihara K, Shinya T, Higaki F. Reduction of neuromelanin-positive nigral volume in patients with MSA, PSP and CBD. Intern Med 2011;50:1683-1687 https://doi.org/10.2169/internalmedicine.50.5101
- Shibata E, Sasaki M, Tohyama K, Otsuka K, Endoh J, Terayama Y, et al. Use of neuromelanin-sensitive MRI to distinguish schizophrenic and depressive patients and healthy individuals based on signal alterations in the substantia nigra and locus ceruleus. Biol Psychiatry 2008;64:401-406 https://doi.org/10.1016/j.biopsych.2008.03.021
- Song IU, Kim JS, Yoo JY, Song HJ, Lee KS. Cognitive dysfunctions in mild Parkinson's disease dementia: comparison with patients having mild Alzheimer's disease and normal controls. Eur Neurol 2008;59:49-54 https://doi.org/10.1159/000109261
- Song IU, Chung YA, Chung SW, Jeong J. Early diagnosis of Alzheimer's disease and Parkinson's disease associated with dementia using cerebral perfusion SPECT. Dement Geriatr Cogn Disord 2014;37:276-285 https://doi.org/10.1159/000357128
- Martorana A, Koch G. “Is dopamine involved in Alzheimer's disease?”. Front Aging Neurosci 2014;6:252
- Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181-184 https://doi.org/10.1136/jnnp.55.3.181
- Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson's disease. Mov Disord 2007;22:1689-1707; quiz 1837 https://doi.org/10.1002/mds.21507
- McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944 https://doi.org/10.1212/WNL.34.7.939
- Kitao S, Matsusue E, Fujii S, Miyoshi F, Kaminou T, Kato S, et al. Correlation between pathology and neuromelanin MR imaging in Parkinson's disease and dementia with Lewy bodies. Neuroradiology 2013;55:947-953 https://doi.org/10.1007/s00234-013-1199-9
- Kashihara K, Shinya T, Higaki F. Neuromelanin magnetic resonance imaging of nigral volume loss in patients with Parkinson's disease. J Clin Neurosci 2011;18:1093-1096 https://doi.org/10.1016/j.jocn.2010.08.043
- Schwarz ST, Rittman T, Gontu V, Morgan PS, Bajaj N, Auer DP. T1-weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson's disease. Mov Disord 2011;26:1633-1638 https://doi.org/10.1002/mds.23722
- Miyoshi F, Ogawa T, Kitao SI, Kitayama M, Shinohara Y, Takasugi M, et al. Evaluation of Parkinson disease and Alzheimer disease with the use of neuromelanin MR imaging and (123)I-metaiodobenzylguanidine scintigraphy. AJNR Am J Neuroradiol 2013;34:2113-2118 https://doi.org/10.3174/ajnr.A3567
- Ogisu K, Kudo K, Sasaki M, Sakushima K, Yabe I, Sasaki H, et al. 3D neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson's disease. Neuroradiology 2013;55:719-724 https://doi.org/10.1007/s00234-013-1171-8
- Sasaki M, Shibata E, Kudo K, Tohyama K. Neuromelanin-sensitive MRI: basics, technique, and clinical applications. Clin Neuroradiol 2008;18:147-153 https://doi.org/10.1007/s00062-008-8018-4
- Tosk JM, Holshouser BA, Aloia RC, Hinshaw DB Jr, Hasso AN, MacMurray JP, et al. Effects of the interaction between ferric iron and L-dopa melanin on T1 and T2 relaxation times determined by magnetic resonance imaging. Magn Reson Med 1992;26:40-45 https://doi.org/10.1002/mrm.1910260105
- Melki PS, Mulkern RV. Magnetization transfer effects in multislice RARE sequences. Magn Reson Med 1992;24:189-195 https://doi.org/10.1002/mrm.1910240122
- Lehericy S, Bardinet E, Poupon C, Vidailhet M, Francois C. 7 Tesla magnetic resonance imaging: a closer look at substantia nigra anatomy in Parkinson's disease. Mov Disord 2014;29:1574-1581 https://doi.org/10.1002/mds.26043
- Zecca L, Casella L, Albertini A, Bellei C, Zucca FA, Engelen M, et al. Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson's disease. J Neurochem 2008;106:1866-1875
- Kashihara K, Hanaoka A, Imamura T. Frequency and characteristics of taste impairment in patients with Parkinson's disease: results of a clinical interview. Intern Med 2011;50:2311-2315 https://doi.org/10.2169/internalmedicine.50.5935
- Cosottini M, Frosini D, Pesaresi I, Costagli M, Biagi L, Ceravolo R, et al. MR imaging of the substantia nigra at 7 T enables diagnosis of Parkinson disease. Radiology 2014;271:831-838 https://doi.org/10.1148/radiol.14131448
- Kwon DH, Kim JM, Oh SH, Jeong HJ, Park SY, Oh ES, et al. Seven-Tesla magnetic resonance images of the substantia nigra in Parkinson disease. Ann Neurol 2012;71:267-277 https://doi.org/10.1002/ana.22592
- Lotfipour AK, Wharton S, Schwarz ST, Gontu V, Schafer A, Peters AM, et al. High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease. J Magn Reson Imaging 2012;35:48-55 https://doi.org/10.1002/jmri.22752
- Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP. The ‘swallow tail' appearance of the healthy nigrosome - a new accurate test of Parkinson's disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS One 2014;9:e93814 https://doi.org/10.1371/journal.pone.0093814
- Blazejewska AI, Schwarz ST, Pitiot A, Stephenson MC, Lowe J, Bajaj N, et al. Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI. Neurology 2013;81:534-540 https://doi.org/10.1212/WNL.0b013e31829e6fd2
Cited by
- Structural MR Imaging in the Diagnosis of Alzheimer's Disease and Other Neurodegenerative Dementia: Current Imaging Approach and Future Perspectives vol.17, pp.6, 2016, https://doi.org/10.3348/kjr.2016.17.6.827
- Parkinson's disease and atypical parkinsonism: the importance of magnetic resonance imaging as a potential biomarker vol.50, pp.4, 2017, https://doi.org/10.1590/0100-3984.2017.50.4e1
- Multielement concentration analysis of Swiss mice brains on experimental model of Alzheimer's disease induced by β‐amyloid oligomers vol.46, pp.5, 2017, https://doi.org/10.1002/xrs.2753
- Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease vol.18, pp.1, 2016, https://doi.org/10.3892/mmr.2018.9044
- Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson’s disease vol.4, pp.None, 2016, https://doi.org/10.1038/s41531-018-0047-3
- Method for Quantitative Evaluation of the Substantia Nigra Using Phase-sensitive Inversion Recovery in 1.5 T Magnetic Resonance Imaging vol.76, pp.6, 2016, https://doi.org/10.6009/jjrt.2020_jsrt_76.6.563
- Quantitative T1 mapping of the substantia nigra using phase-sensitive inversion recovery sequence at 3.0-T: a healthy volunteer study vol.62, pp.2, 2016, https://doi.org/10.1177/0284185120920806
- Diagnostic performance of neuromelanin-sensitive magnetic resonance imaging for patients with Parkinson’s disease and factor analysis for its heterogeneity: a systematic review and meta-analysis vol.31, pp.3, 2016, https://doi.org/10.1007/s00330-020-07240-7
- Reliability and Reproducibility of Neuromelanin‐Sensitive Imaging of the Substantia Nigra: A Comparison of Three Different Sequences vol.53, pp.3, 2016, https://doi.org/10.1002/jmri.27384