DOI QR코드

DOI QR Code

Key Derivation Functions Using the Dual Key Agreement Based on QKD and RSA Cryptosystem

양자키분배와 RSA 암호를 활용한 이중키 설정 키유도함수

  • Park, Hojoong (Kookmin University Department of Financial Information Security) ;
  • Bae, Minyoung (Kookmin University Department of Financial Information Security) ;
  • Kang, Ju-Sung (Kookmin University Department of Math. / Financial Information Security) ;
  • Yeom, Yongjin (Kookmin University Department of Math. / Financial Information Security)
  • Received : 2016.01.31
  • Accepted : 2016.04.21
  • Published : 2016.04.30

Abstract

For a secure communication system, it is necessary to use secure cryptographic algorithms and keys. Modern cryptographic system generates high entropy encryption key through standard key derivation functions. Using recent progress in quantum key distribution(QKD) based on quantum physics, it is expected that we can enhance the security of modern cryptosystem. In this respect, the study on the dual key agreement is required, which combines quantum and modern cryptography. In this paper, we propose two key derivation functions using dual key agreement based on QKD and RSA cryptographic system. Furthermore, we demonstrate several simulations that estimate entropy of derived key so as to support the design rationale of our key derivation functions.

안전한 통신 시스템을 갖추기 위해서는 안전한 암호 알고리즘의 사용과 안전한 암호키 사용이 필수적이다. 현대 암호에서는 표준화된 키유도함수(Key derivation function)를 통해 안전한 암호키를 생성한다. 최근에는 양자물리의 성질을 이용한 양자키분배(Quantum key distribution, 이하 QKD) 시스템에 대한 연구가 활발히 진행되고 있어, 현대 암호시스템의 안정성 향상에 기여할 수 있을 것으로 기대된다. 이러한 관점에서 양자 암호와 현대 암호를 결합한 이중키 설정에 대한 연구가 요구된다. 본 논문에서는 양자키분배(QKD)와 현대 암호시스템인 RSA를 조합하여 안전한 키를 생성하는 두 가지의 키유도함수를 제안한다. 또한, 시뮬레이션을 통하여 생성된 암호키의 엔트로피를 측정하는 방법으로 제안한 키유도함수의 유효성을 살펴본다.

Keywords

References

  1. NIST, Recommendation for Key Derivation Using Pseudorandom Functions, SP 800-108, Oct. 2009.
  2. NIST, Recommendation for Password-Based Key Derivation, SP 800-132, Dec. 2010.
  3. H. Krawczyk and P. Eronen, Hmac-based extract-and-expand key derivation function (hkdf), RFC 5869 (Proposed Standard), May 2010.
  4. ID Quantique, KEY SERVER, Retrieved Mar., 26 from http://swissquantum.idquantique.com/?Key-Server#Parallel_Key_Agreements.
  5. ID Quantique, CERBERIS, from http://www.idquantique.com/wordpress/wp-content/uploads/Cerberis-Datasheet.pdf.
  6. R. Sarath and A. Shajin Narguman, "Key distribution using dual channel technique for ultimate security," Indian J. Sci. and Technol., vol. 8, no. 26, 2015.
  7. A. Odeh, K. Elleithy, M. Alshowkan, and E. Abdelfattah, "Quantum key distribution by using public key algorithm(RSA)," IEEE INTECH 2013, pp. 83-86, London, UK, Aug. 2013.
  8. ISO/IEC, Information technology-Security technique-Encryption algorithms-Part 2: Asymmetric ciphers, ISO/IEC 18033-2, May 2006.
  9. NIST, Recommendation for Key Derivation through Extraction-then-expansion, SP 800-56C, Nov. 2011.
  10. NIST, Recommendation for Pair-Wise key establishment schemes using integer factorization cryptography, SP 800-56B, Sept. 2014.
  11. Y. S. Kim, "Group key transfer protocol based on shamir's secret sharing," J. KICS, vol. 39B no. 9, pp. 555-560, 2014. https://doi.org/10.7840/kics.2014.39B.9.555
  12. NIST, Recommendation for the entropy sources used for random bit generation, SP 800-90B, Aug. 2012.
  13. T. Matthias and R. Renner, A randomness extractor for the Quantis device, vol. 31. Id Quantique Technical Report, 2012.
  14. B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F. Standaert, and Y. Yu, Leftover hash lemma, revisited, Sept. 2011.
  15. G. V. Assche, Quantum cryptography and secret-key Distillation, CAMBRIDGE, 2012.
  16. S. Im, H. Jeon, and J. Ha, "A novel distributed secret key extraction technique for wireless network," J. KICS, vol. 39A, no. 12, pp. 708-717, 2014. https://doi.org/10.7840/kics.2014.39A.12.708
  17. K. J. Ha, C. H. Seo, and D. Y. Kim, "Design of validation system for a crypto-algorithm implementation," J. KICS, vol. 39B no. 04, pp. 242-250, 2014. https://doi.org/10.7840/kics.2014.39B.4.242
  18. Whitewood, Whitewood Entropy Engine, Retrieved Jan., 23 from http://www.whitewoodencryption.com/wp-content/uploads/2015/08/Whitewood_EE.pdf.
  19. NIST, Secure Hash Standard(SHS), FIPS 180-4, Aug. 2015.
  20. TTA, Key Derivation Functions Using ARIA/SEED, TTAK.KO-12.0241, Jul. 2014.
  21. NIST, Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program, Jan. 2016.
  22. H. Kang, Y. Yeom, and J. S. Kang, "An implementation of integrated tool for statistical randomness tests and entropy estimations," in Proc. KICS Winter Conf. 2016, Jeongseon, Korea, Jan. 2016.
  23. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, The KECCAK sponge function family, Retrieved Jan., 25 from http://keccak.noekeon.org.

Cited by

  1. NIST SP 800-90B 프레딕터를 이용한 잡음원의 엔트로피 추정량에 대한 실험적 분석 vol.41, pp.12, 2016, https://doi.org/10.7840/kics.2016.41.12.1892
  2. 시간지연을 이용한 양자비밀직접통신 vol.21, pp.12, 2016, https://doi.org/10.6109/jkiice.2017.21.12.2318
  3. Efficient hardware implementation and analysis of true random-number generator based on beta source vol.42, pp.4, 2016, https://doi.org/10.4218/etrij.2020-0083