DOI QR코드

DOI QR Code

비선형 HPA 환경에서 DFT Spreading 기반 5세대 후보변조기술의 BER 성능 비교와 평가

BER Performance Comparison and Evaluation of 5G Candidate Waveforms Based on DFT Spreading under the Nonlinear HPA

  • An, Changyoung (Department of electronic engineering, Chungbuk National University) ;
  • Ryu, Heung-Gyoon (Department of electronic engineering, Chungbuk National University)
  • 투고 : 2015.10.22
  • 심사 : 2016.04.08
  • 발행 : 2016.04.30

초록

높은 PAPR(Peak-to-Average Power Ratio)은 HPA(High Power Amplifier) 비선형성에 의해 시스템의 성능을 열화 시키고, 스펙트럼의 OOB(Out-of-Band) 전력을 향상시키는 문제의 원인이 된다. 5세대 이동통신 시스템을 위한 후보변조기술로 UFMC(Universal Filtered Multi-Carrier) 및 FBMC(Filter Bank Multi-Carrier) 시스템이 있다. 본 논문에서는 PAPR 저감 기법으로 잘 알려진 DFT-s(Discrete Fourier Transform Spreading) 기법을 각 시스템에 적용하고, 비선형 HPA 환경에서 각각의 성능에 대하여 비교분석하였다. 우선, 본 논문에서는 OFDM(Orthogonal Frequency Division Multiplexing), UFMC, FBMC 시스템에 대해서 설명을 하며, 각 시스템에 DFT spreading 기법을 적용한 DFT-s-OFDM, DFT-s-UFMC, DFT-s-FBMC 시스템에 대해 설명한다. 본 논문에서는 비선형 모델로 Saleh 모델을 사용하였으며, 다양한 강도의 HPA 비선형성을 고려하여 시뮬레이션을 수행하였다. 시뮬레이션 결과, OFDM 및 UFMC 시스템의 경우 PAPR을 효과적으로 저감시킬 수 있으며, FBMC의 경우 PAPR 저감은 이루어지나 그 효과가 크지 않음을 확인하였다.

High PAPR (Peak-to-Average Power Ratio) characteristic causes some problems like system performance degradation and OOB (Out-of-Band) power increasement under the HPA (High Power Amplifier) nonlinearity condition. UFMC (Universal Filtered Multi-Carrier) and FBMC (Filter Bank Multi-Carrier) are regarded as 5G(Generation) candidate waveforms. In this paper, we evaluate and analyze performance of these systems with DFT-s (Discrete Fourier Transform Spreading) technique under the nonlinear HPA environment. In this paper, we describe OFDM (Orthogonal Frequency Division Multiplexing), UFMC, FBMC, DFT-s-OFDM, DFT-s-UFMC, and DFT-s-FBMC system, and evaluate BER (Bit Error Rate) performance of these systems. As simulation results, BER performance degradation by HPA nonlinearity of DFT-s-OFDM and DFT-s-UFMC is greatly overcome by DFT spreading technique. However, BER performance degradation by HPA nonlinearity of DFT-s-FBMC system is little overcome.

키워드

참고문헌

  1. Q. C. Li, H. Niu, A. T. Papathanassiou, and G. Wu, "5G network capacity: Key elements and technologies," in Veh. Technol. Mag., IEEE, vol. 9, no. 1, pp. 71-78, Mar. 2014.
  2. J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What Will 5G Be?," in IEEE J. Sel. Area. in Commun., vol. 32, no. 6, pp. 1065-1082, Jun. 2014. https://doi.org/10.1109/JSAC.2014.2328098
  3. G. Wunder, et al., "5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications," IEEE Commun. Mag., vol. 52, no. 2, pp. 97-105, Feb. 2014. https://doi.org/10.1109/MCOM.2014.6736749
  4. P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, "Modulation formats and waveforms for 5G networks: Who will be the heir of OFDM?: An overview of alternative modulation schemes for improved spectral efficiency," in IEEE Signal Processing Mag., vol. 31, no. 6, pp. 80-93, Nov. 2014.
  5. F.; Schaich and T. Wild, "Waveform contenders for 5G - OFDM vs. FBMC vs. UFMC," ISCCSP, pp. 457-460, May 2014.
  6. V. Vakilian, T. Wild, F. Schaich, S. ten Brink, and J.-F. Frigon, "Universal-filtered multicarrier technique for wireless systems beyond LTE," in 2013 IEEE, Globecom Workshops (GC Wkshps), pp. 223-228, Dec. 2013.
  7. B. Farhang-Boroujeny, "OFDM versus filter bank multicarrier," in IEEE Signal Processing Mag., vol. 28, no. 3, pp. 92-112, May 2011.
  8. W. Chung, B. Kim, M. Choi, H. Nam, H. Yu, S. Choi, and D. Hong, "Synchronization error in QAM-Based FBMC system," in IEEE MILCOM, pp. 699-705, Oct. 2014.
  9. M. Mukherjee, L. Shu, V. Kumar, P. Kumar, and R. Matam, "Reduced out-of-band radiatiobased filter optimization for UFMC systems in 5G," in IWCMC, pp. 1150-1155, Dubrovnik, Croatia, Aug. 2015.
  10. Z. Kollar, L. Varga, and K. Czimer, "Clipping-based iterative PAPR-Reduction techniques for FBMC," in Proc. OFDM 2012, pp. 1-7, Essen, Germany, Aug. 2012.
  11. M. Chafii, J. Palicot, and R. Gribonval, "Closed-form approximations of the PAPR distribution for Multi-Carrier Modulation systems," in EUSIPCO, pp. 1920-1924, Lisbon, Portugal, Sept. 2014.
  12. H. Mahmoud, T. Yucek, and H. Arslan, "OFDM for cognitive radio: merits and challenges," in IEEE Wirel. Commun., vol. 16, no. 2, pp. 6-15, Apr. 2009.
  13. H. G. Myung, et al., "Peak-to-average power ratio of single carrier FDMA singles with pulse shaping," in Proc. PIMRC 2006, Helsinki, Finland, Sept. 2006.
  14. H. G. Myung, J. Lim, and D. J. Goodman, "Single carrier FDMA for uplink wireless transmission," in IEEE Veh. Technol. Mag., vol. 1, no. 3, pp. 30-38, Sept. 2006.
  15. M. M. Shammasi and S. M. Safavi, "Performance of a predistorter based on Saleh model for OFDM systems in HPA nonlinearity," in ICACT, pp. 148-152, PyeongChang, Korea, Feb. 2012.

피인용 문헌

  1. 비선형 고전력 증폭기를 가진 이종 직교주파수분할다중화 시스템에서 스펙트럼 공유/중복 효과에 대한 연구 vol.41, pp.12, 2016, https://doi.org/10.7840/kics.2016.41.12.1707
  2. 상호 상관을 이용한 부가정보가 필요 없는 Selected Mapping 수신방법 제안 vol.42, pp.4, 2016, https://doi.org/10.7840/kics.2017.42.4.739
  3. Constant Envelope Multiplexing via Constellation Tailoring Scheme for Flexible Power Allocation of GNSS Signals vol.10, pp.4, 2021, https://doi.org/10.11003/jpnt.2021.10.4.335