DOI QR코드

DOI QR Code

임의의 생성다항식 행렬을 갖는 길쌈부호도 (n, 1) 마더부호의 천공으로 생성 가능한가?

Sufficient Conditions for the Existence of an (n, 1) Mother Code and Its Puncturing Pattern to Generating a Given Convolutional Code

  • Chung, Habong (Hongik University Department of Electronic and Electrical Engineering) ;
  • Seong, Jinwoo (Hongik University Department of Electronics, Information and Communication Engineering)
  • Received : 2016.01.25
  • Accepted : 2016.04.11
  • Published : 2016.04.30

Abstract

천공이란 길쌈부호의 부호율을 증가시키는데 쓰이는 가장 보편적인 방법이며, 이때 천공하기 전의 길쌈부호를 마더부호라고 한다. 본 논문에서는 임의의 (N, K) 길쌈부호를 특정 (n, 1) 마더부호를 천공함으로써 만들 수 있는지 여부에 대하여 조사하였다. 동일한 부호어 집합을 갖는 두 개의 길쌈부호를 서로 동등(equivalent)하다고 할 때, 주어진 (N, K) 길쌈부호가(n, 1) 마더부호를 천공하여 얻은 천공된 길쌈부호와 동등하기 위한 두 개의 충분조건을 소개한다.

Puncturing is the most common way of increasing the rate of convolutional codes. The puncturing process is done to the original code called the mother code by a specific puncturing pattern. In this article, we investigate into the question whether any convolutional code is obtainable by puncturing some (n, 1) mother codes. We present two sufficient conditions for the mother code and the puncturing pattern to satisfy in order that the punctured code is equivalent to the given (N, K) convolutional code.

Keywords

References

  1. J. Barbier, G. Sicot, and S. Houcke, "Algebraic approach for the reconstruction of linear and convolutional error correcting codes," in Proc. CISE'06, pp. 66-71, Venice, Italia, Nov. 2006.
  2. A. Canteaut and F. Chabaud, "A new algorithm for finding minimum-weight words in a linear code: application to primitive narrow-sense BCH codes of length 511," IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 367-378, Jan. 1998. https://doi.org/10.1109/18.651067
  3. M. Cote and N. Sendrier, "Reconstruction of convolutional codes from noisy observation," in Proc. IEEE ISIT'09, pp. 546-550, Seoul, Korea, Jun. 2009.
  4. E. Filiol, "Reconstruction of convolutionnal encoders over GF(q)," Lecture Notes in Com. Sci., Crypt. and Coding, vol. 1355, pp. 101-109, Dec. 1997.
  5. E. Filiol, "Reconstruction of punctured convolutional encoders", in Proc. ISITA'00, Hawaii, USA, Nov. 2000.
  6. J. H. Lee, et al., "Recognition of convolutional code with performance analysis," J. KICS, vol. 37A, no. 04, pp. 260-268, Apr. 2012.
  7. M. Marazin, et al., "Blind recovery if k/n rate convolutional encoders in a noisy environment," EURASIP J. Wireless Commun. Netw., vol. 2011, pp. 1186-1687, Nov. 2011.
  8. S. Su, et al., "Blind identification of convolutional encoder parameters," The Scientific World J., vol. 2014, no. 798612, p. 9, May 2014.
  9. M. Cluzeau and M. Finiasz, "Reconstruction of punctured convolutional codes," in Proc ITW'09, pp. 75-79, Taormina, Italy, Oct. 2009.
  10. G. Karpilovsky, Topics in field theory, 1st Ed., Elsevier, 1989.
  11. H. S. Jang, H. B. Chung, and J. W. Seong, "On the existence of the (2,1) mother code of (n,n-1) convolutional code," J. KICS, vol. 39A, no. 04, pp. 165-171, Apr. 2014. https://doi.org/10.7840/kics.2014.39A.4.165

Cited by

  1. 채널 오류율 추정에 기반을 둔 길쌈부호의 개선된 재구성 알고리즘 vol.42, pp.5, 2017, https://doi.org/10.7840/kics.2017.42.5.951