DOI QR코드

DOI QR Code

Effects of Heat Treatment and Viologen Incorporation on Electrochromic Properties of TiO2 Nanotubes

열처리 및 바이올로젠 도입에 따른 TiO2 나노튜브의 전기변색 특성

  • Cha, Hyeongcheol (Interdisciplinary Program in Creative Engineering, School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Nah, Yoon-Chae (Interdisciplinary Program in Creative Engineering, School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 차형철 (한국기술교육대학교 에너지신소재화학공학부, 창의융합공학협동과정) ;
  • 나윤채 (한국기술교육대학교 에너지신소재화학공학부, 창의융합공학협동과정)
  • Received : 2016.04.10
  • Accepted : 2016.04.15
  • Published : 2016.04.28

Abstract

We demonstrate the electrochromic properties of $TiO_2$ nanotubes prepared by an anodization process and investigate the effects of heat treatment and viologen incorporation on them. The morphology and crystal structure of anodized $TiO_2$ nanotubes are investigated by scanning electron microscopy and X-ray diffraction. As-formed $TiO_2$ nanotubes have straight tubular layers with an amorphous structure. As the annealing temperature increases, the anodized $TiO_2$ nanotubes are converted to the anatase and rutile phases with some cracks on the tube surface and irregular morphology. Electrochemical results reveal that amorphous $TiO_2$ nanotubes annealed at $150^{\circ}C$ have the largest oxidation/reduction current, which leads to the best electrochromic performance during the coloring/bleaching process. Viologen-anchored $TiO_2$ nanotubes show superior electrochromic properties compared to pristine $TiO_2$ nanotubes, which indicates that the incorporation of a viologen can be an effective way to enhance the electrochromic properties of $TiO_2$ nanotubes.

Keywords

References

  1. P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky: Electrochromism: Fundamentals and Applications, Wiley-VCH Verlag GmbH, Weinheim (2007) 22.
  2. S. K. Deb: Sol. Energy Mater. Sol. Cells, 92 (2008) 245. https://doi.org/10.1016/j.solmat.2007.01.026
  3. T.-H. Kim and Y.-C. Nah: J. Korean Powder Metall. Inst., 22 (2015) 309. https://doi.org/10.4150/KPMI.2015.22.5.309
  4. Y.-C. Nah, A. Ghicov, D. Kim and P. Schmuki: Electrochem. Commun., 10 (2008) 1777. https://doi.org/10.1016/j.elecom.2008.09.017
  5. R. J. Mortimer, A. L. Dyer and J. R. Reynolds: Displays, 27 (2006) 2. https://doi.org/10.1016/j.displa.2005.03.003
  6. Y.-C. Nah, K.-S. Ahn, K.-Y. Cho, J.-Y. Park, H.-S. Shim, Y. M. Lee, J.-K. Park and Y.-E. Sung: J. Electrochem. Soc., 152 (2005) H201. https://doi.org/10.1149/1.2073088
  7. Y.-C. Nah, K.-S. Ahn and Y.-E. Sung: Solid State Ionics, 165 (2003) 229. https://doi.org/10.1016/j.ssi.2003.08.036
  8. J. H. Kim, C.-S. Park, H. D. Park, H.-S. Tae and S.-H. Lee: J. Nanosci. Nanotechnol., 13 (2013) 3270. https://doi.org/10.1166/jnn.2013.7317
  9. T.-H. Kim, H. J. Jeon, J.-W. Lee and Y.-C. Nah: Elctrochem. Commun., 57 (2015) 65. https://doi.org/10.1016/j.elecom.2015.05.008
  10. M.-S. Fan, S.-Y. Kao, T.-H. Chang, R. Vittal and K.-C. Ho: Sol. Energy Mater. Sol. Cells, 145 (2016) 35. https://doi.org/10.1016/j.solmat.2015.06.031
  11. A. Verma, S. B. Samanta, A. K. Bakhshi and S. A. Agnihotry: Sol. Energy Mater. Sol. Cells, 88 (2005) 47. https://doi.org/10.1016/j.solmat.2004.10.006
  12. M. Deepa, A. G. Joshi, A. K. Srivastava, S. M. Shivaprasad and S. A. Agnihotry: J. Electrochem. Soc., 153 (2006) C365. https://doi.org/10.1149/1.2184072
  13. J. R. V. Garcia, E. M. L. Ugalde, F. H. Santiago and J. M. H. Lopez: J. Nanosci. Nanotech., 8 (2008) 2703. https://doi.org/10.1166/jnn.2008.563
  14. S.-M. Wang, L. Liu, W.-L. Chen, Z.-M. Zhang, Z.-M. Su and E.-B. Wang: J. Mater. Chem. A, 1 (2013) 216. https://doi.org/10.1039/C2TA00486K
  15. K. Lee, A. Mazare and P. Schmuki: Chem. Rev., 114 (2014) 9385. https://doi.org/10.1021/cr500061m
  16. Y.-C. Nah, I. Paramasivam and P. Schmuki: Chem. Phys. Chem., 11 (2010) 2698. https://doi.org/10.1002/cphc.201000276
  17. R. Kirchgeorg, S. Berger and P. Schmuki: Chem. Commun., 47 (2011) 1000. https://doi.org/10.1039/C0CC03201H
  18. J. Choi, S.-H. Park, Y. S. Kwon, J. Lim, I. Y. Song and T. Park: Chem. Commun., 48 (2012) 8748. https://doi.org/10.1039/c2cc33629d
  19. M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff and K. Sopian: Int. J. Electrochem. Sci., 7 (2012) 4871.
  20. Z. Wang and X. Hu: Thin Solid Films, 352 (1999) 62. https://doi.org/10.1016/S0040-6090(99)00321-1
  21. A. Verma and S. A. Agnihotry: Electrochim. Acta, 52 (2007) 2701. https://doi.org/10.1016/j.electacta.2006.09.036
  22. R. Cinnsealach, G. Boschloo, S. N. Rao and D. Fitzmaurice, Sol. Energy Mater. Sol. Cells, 57 (1999) 107. https://doi.org/10.1016/S0927-0248(98)00156-1
  23. X. W. Sun and J. X. Wang: Nano Lett., 8 (2008) 1884. https://doi.org/10.1021/nl0804856