DOI QR코드

DOI QR Code

Optical Characteristics of CdSe/ZnS Quantum Dot with Precursor Flow Rate Synthesized by using Microreactor

마이크로리액터를 이용한 전구체 유속에 따른 CdSe/ZnS 양자점의 광학특성

  • Park, Ji Young (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Jeong, Da-Woon (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Ju, Won (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Seo, Han Wook (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Cho, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Kim, Bum Sung (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
  • 박지영 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 정다운 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 주원 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 서한욱 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 좌용호 (한양대학교 융합화학공학과) ;
  • 김범성 (한국생산기술연구원 한국희소금속산업기술센터)
  • Received : 2016.03.26
  • Accepted : 2016.04.04
  • Published : 2016.04.28

Abstract

High-quality colloidal CdSe/ZnS (core/shell) is synthesized using a continuous microreactor. The particle size of the synthesized quantum dots (QDs) is a function of the precursor flow rate; as the precursor flow rate increases, the size of the QDs decreases and the band gap energy increases. The photoluminescence properties are found to depend strongly on the flow rate of the CdSe precursor owing to the change in the core size. In addition, a gradual shift in the maximum luminescent wave (${\lambda}_{max}$) to shorter wavelengths (blue shift) is found owing to the decrease in the QD size in accordance with the quantum confinement effect. The ZnS shell decreases the surface defect concentration of CdSe. It also lowers the thermal energy dissipation by increasing the concentration of recombination. Thus, a relatively high emission and quantum yield occur because of an increase in the optical energy emitted at equal concentration. In addition, the maximum quantum yield is derived for process conditions of 0.35 ml/min and is related to the optimum thickness of the shell material.

Keywords

References

  1. V. L. Colvin, M. C. Schlamp and A. P. Alivisatos: Nature, 370 (1994) 354. https://doi.org/10.1038/370354a0
  2. M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos: Science, 281 (1998) 2013. https://doi.org/10.1126/science.281.5385.2013
  3. S. K. Poznyak, D. V. Talapin, E. V. Shevchenko and H. Weller: Nano Lett., 4 (2004) 693. https://doi.org/10.1021/nl049713w
  4. M. G. Bawendi, M. L. Steigerwald and L. E. Brus: Annu. Rev. Phys. Chem., 41 (1990) 477. https://doi.org/10.1146/annurev.pc.41.100190.002401
  5. J. Qiu, J. M. Depuydt, H. Cheng and M. A. Haase: Appl. Phys. Lett., 59 (1991) 2992. https://doi.org/10.1063/1.105821
  6. M. Kumar, M. K. Sharan and M. Sharon: Thin Solid Films, 312 (1998) 139. https://doi.org/10.1016/S0040-6090(97)00734-7
  7. B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi: J. Phys. Chem. B, 101 (1997) 9463. https://doi.org/10.1021/jp971091y
  8. N. S. A. Eom, T. S. Kim, Y. H. Choa and B. S. Kim: Kor. J. Mater. Res., 22 (2012) 140 (Korean). https://doi.org/10.3740/MRSK.2012.22.3.140
  9. N. S. A. Eom, T.-S. Kim, Y.-H. Choa and B. S. Kim: J. Korean Powder Metall. Inst., 19 (2012) 442 (Korean). https://doi.org/10.4150/KPMI.2012.19.6.442
  10. D.-W. Jeong, B. Swain, C. J. Lee, T.-Y. Seong, K.-T. Park and B. S. Kim: Int. J. Appl. Ceram. Technol., 13 (2015) 223.
  11. Y.-T. Kwon, N. S. A. Nu, Y.-M. Choi, B.-S. Kim, T.-S. Kim, C.-G. Lee, K.-J. Lee and Y.-H. Choa: J. Nanosci. Nanotechnol., 14 (2014) 7636. https://doi.org/10.1166/jnn.2014.9385