DOI QR코드

DOI QR Code

Application of unmanned aerial image application red tide monitoring on the aquaculture fields in the coastal waters of the South Sea, Korea

연근해 양식장 주변 적조 모니터링을 위한 무인항공영상 적용 연구

  • Oh, Seung-Yeol (Department of Spatial Information Engineering, Pukyong National University) ;
  • Kim, Dae-Hyun (OCEANTECH CO.) ;
  • Yoon, Hong-Joo (Department of Spatial Information Engineering, Pukyong National University)
  • 오승열 (부경대학교 공간정보시스템공학과) ;
  • 김대현 (오션테크(주)) ;
  • 윤홍주 (부경대학교 공간정보시스템공학과)
  • Received : 2015.12.30
  • Accepted : 2016.01.14
  • Published : 2016.04.30

Abstract

Red tide, causes aquaculture industry the damages in Korea every summer, was usually detected by using satellite, aquaculture information was difficult to detect by using satellite. Therefore, we suggests the method for detecting the red tide using the coastal observation and the product from the unmanned aerial Vehicle. As a result, we obtained the high resolution unmanned aerial Vehicle images, detected the red tide by using the unsupervised classification from the true color images and the simple algorithm from the RGB color images. Compared the previous color images, unmanned aerial Vehicle images were clearly classified the ocean color, we were able to identify the red tide distribution in sea surface. These methods were determined to accurately monitor the red tide distribution on the aquaculture fields in the coastal waters where is established the aquaculture.

매년 여름 우리나라 양식업에 피해를 입히는 적조를 탐지하기 위한 연구는 대부분 인공위성을 이용하였으나 양식장에 대한 정보는 인공위성으로 산출하기에는 한계를 가진다. 따라서 본 연구에서는 무인항공기를 이용한 연안촬영과 그 산출물을 이용하여 적조를 탐지하는 기법을 제시하였다. 그 결과 높은 해상도를 가진 무인항공영상을 획득 할 수 있었으며 색상을 이용한 무감독 분류와 가시광영역의 세 가지 분광밴드를 이용한 단순 알고리즘을 이용하여 적조를 탐지하였다. 기존의 천연색 영상에 비하여 시각적으로 명확한 해수색의 구분이 가능하였으며 적조의 해수면 분포를 확인할 수 있었다. 이와 같은 방법은 양식장이 설치되어 있는 연안에서 더욱 정확한 적조의 분포 상황을 모니터링 할 수 있을 것으로 판단된다.

Keywords

References

  1. Ahn, Y. H. and P. Shanmugam, 2006. Detecting the red tide algal bloom from satellite ocean color observations in optically complex Northeast Asia Coastal waters, Remote Sensing of Environment, 103: 419-437. https://doi.org/10.1016/j.rse.2006.04.007
  2. Ahn, Y. H., P. Shanmugam, J. H. Ryu, and J. C. Jeong, 2006. Satellite detection of harmful algal bloom occurrences in Korean waters, Harmful Algae, 5: 213-231. https://doi.org/10.1016/j.hal.2005.07.007
  3. Hu, C., F. E. Muller Karger, C. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, 2005. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters, Remote Sensing of Environment, 97: 311-321. https://doi.org/10.1016/j.rse.2005.05.013
  4. Hu, C., F. E. Muller Karger, D. C. Biggs, K. L. Carder, B. Nababan, D, Dadeau, and J. Vandernloemen, 2003. Comparison of ship and satellite biooptical measurements on the continental margin of the NE Gulf of Mexico, International Journal of Remote Sensing, 24(13): 2597-2612. https://doi.org/10.1080/0143116031000067007
  5. Hu, C., F. E. Muller Karger, G. A. Vargo, M. B. Neely, and E. Johns, 2004. Linkages between coastal runoff and the Florida Keys ecosystem: A study of a dark plume event, Geophysical Research Letter, 31: doi:10.1029/2004GL020382.
  6. Ishizaka, J., Y. Kitaura, Y. Touke, H. Sasaki, A. Tanaka, H. Murakami, T. Suzuki, K. Matsuoka, and H. Nakata, 2006. Satellite detection of red ride in Ariake Sound, 1998-2001, Journal of Oceanography, 62: 37-45. https://doi.org/10.1007/s10872-006-0030-1
  7. Kang, Y. S., H. G. Kim, W. A. Lim, C. K. Lee, S. G. Lee, and S. Y. Kim, 2002. An unusual coastal environment and Cochlodinium polykrikoides blooms in 1995 in the South Sea of Korea, Journal of the Korean Society of Oceanograp, 37(4): 212-223.
  8. Lee, M. O., B. K. Kim, Y. Kwon, and J. K. Kim, 2009. Characteristics of the marine environment and algal blooms in Gamak Bay, Fisheries Science, 75: 410-411.
  9. Lee, Y. S., 2006. Factors affecting outbreaks of highdensity Cochlodinium polykrikoides red tides in the coastal seawaters around Yeosu and Tongyeong, Korea, Marine Pollution and Bulletin, 52: 1249-1259. https://doi.org/10.1016/j.marpolbul.2006.02.024
  10. NIFS, 2000. Red-Tide (III), National Institute of Fisheries Science.
  11. NIFS, 2003. National Report on HABs in Korea, National Institute of Fisheries Science. National Institute of Fisheries Science Red-Tide Information System (www.nifs.go.kr/portal/external/environment/redtide/index.jsp).
  12. Son, Y. B., J. H. Yoo, J. H. No, S. J. Joo, and S. H. Kim, 2012. Climatological variability of satellite-derived sea surface temperature and Chlorophyll in the South Sea of Korea and East China Sea. Ocean and Polar Research, 34(2): 201-218(In Korean with English Abstract). https://doi.org/10.4217/OPR.2012.34.2.201
  13. Son, Y. B., J. Ishizaka, J. C. Jeong, H. C. Kim, and T. Lee, 2011. Cochlodinium polykrikoides red ride detection in the South Sea of Korea using spectral classification of MODIS data, Ocean Science Journal, 46(4): 239-263. https://doi.org/10.1007/s12601-011-0019-6
  14. Son, Y. B., T. H. Lee, D. R. Choi, S. T. Jang, C. H. Kim, Y. H. Ahn, J. H. Ryu, M. K. Kim, S. K. Jung, and J. Ishizaka, 2010. Spatial and temporal variations of satellite-derived 10-year surface Particulate Organic Carbon (POC) in the East China Sea, Journal of the Korean Society of Remote Sensing, 26(4): 421-437(In Korean with English Abstract). https://doi.org/10.7780/kjrs.2010.26.4.421
  15. Stumpf, R. P., M. E. Culver, P. A. Tester, M. Tomlinson, G. J. Kirkpatrick, B. A. Pederson, E. Truby, V. Ransibrahmanakuf, and M. Soracco, 2003. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data, Harmful Algae, 2: 147-160. https://doi.org/10.1016/S1568-9883(02)00083-5
  16. Suh, Y. S., L. H. Jang, N. K. Lee, and J. Ishizaka, 2004. Feasibility of red tide detection around Korea waters using satellite remote sensing, Journal of Fisher Science Technology, 7(3): 148-162.
  17. Tomlinson, M. C., R. P. Stumpf, V. Ransibrahmanakul, E. W. Turby, G.; J. Kirkpatrick, B. A. Perderson, A. V. Gabriel, and C. A. Heil, 2004. Evaluation of the use of SeaWiFS imagery for detecting Karenia brevia harmful algal blooms in the eastern Gulf of Mexico, Remote Sensing of Environment, 91: 293-303. https://doi.org/10.1016/j.rse.2004.02.014

Cited by

  1. 드론 항공사진측량 기법을 활용한 갯벌지역 모델링 및 갯골정보 추출에 관한 연구 vol.25, pp.3, 2017, https://doi.org/10.7319/kogsis.2017.25.3.043
  2. 항공정사영상의 상대적인 지상좌표 위치오차에 따른 색상보정 vol.33, pp.5, 2016, https://doi.org/10.7780/kjrs.2017.33.5.1.4
  3. UAV로 촬영한 수직 영상과 고경사 영상을 이용한 정사영상 및 3차원 모델링 비교 vol.25, pp.4, 2016, https://doi.org/10.7319/kogsis.2017.25.4.035
  4. Scaling Up From Regional Case Studies to a Global Harmful Algal Bloom Observing System vol.6, pp.None, 2019, https://doi.org/10.3389/fmars.2019.00250
  5. A New Algorithm to Estimate Chlorophyll-A Concentrations in Turbid Yellow Sea Water Using a Multispectral Sensor in a Low-Altitude Remote Sensing System vol.11, pp.19, 2016, https://doi.org/10.3390/rs11192257
  6. High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery vol.21, pp.13, 2021, https://doi.org/10.3390/s21134447