DOI QR코드

DOI QR Code

Stability of the Divergent Barotropic Rossby-Haurwitz Wave

발산 순압 로스비-하우어비츠 파동의 안정성

  • Jeong, Han-Byeol (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Cheong, Hyeong-Bin (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 정한별 (부경대학교 환경대기과학과) ;
  • 정형빈 (부경대학교 환경대기과학과)
  • Received : 2016.03.21
  • Accepted : 2016.04.15
  • Published : 2016.04.30

Abstract

Stability of the barotropic Rossby-Haurwitz wave is investigated using the numerical models on the global domain. The Rossby-Haurwitz wave under investigation is composed of the basic zonal flow of super-rotation and a finite amplitude spherical harmonic wave. The Rossby-Haurwitz wave is given as either steady or unsteady wave by adjusting the strength of the super-rotating zonal flow. Stability as well as the growth rate of the wave in the numerical simulation is determined by comparing the perturbation amplitude at two different time stages. Unstable modes of the Rossby-Haurwitz wave exhibited a horizontal structure composing of various zonal-wavenumber components. The vorticity perturbation for some modes showed a discontinuity around the area of weak flow, which was found robust regardless of the horizontal resolution of the model. Fourier finite element model was shown to generate the unstable mode in earlier stage of the time integration due to less accuracy compared to the spherical harmonic spectral model. Taking the overall accuracy of the models into consideration, the time by which the unstable mode begin to dominate over the spherical harmonic wave was estimated.

전구영역 수치모델을 이용하여 순압 로스비-하우어비츠 파동의 안정성을 조사하였다. 본 연구에서 조사한 로스비-하우어비츠 파동은 강체 회전하는 동서 기본류와 유한한 진폭을 가지는 구면조화 파동으로 구성된다. 로스비-하우어비츠 파동은 강체 회전하는 동서 평균류의 강도에 따라 정상 또는 비정상의 구조로 나타난다. 수치 실험을 통해 임의의 다른 두 시간에서 섭동장의 진폭을 비교하여 파동의 안정성뿐만 아니라 성장률을 결정하였다. 로스비-하우어비츠 파동의 불안정 모드는 다양한 동서 파수 성분이 결합된 형태로 나타났다. 파동의 속도가 느린 지역에서 와도 섭동장은 불연속적인 형태를 보이는데, 이는 모델의 수평 해상도와 관계가 없는 것으로 밝혀졌다. 푸리에-유한 요소 모델에서 더 이른 적분 시간에 불안정 모드가 나타났는데, 이는 구면조화 스펙트럴 모델 대비 더 낮은 수치 정확도를 가지기 때문인 것으로 보인다. 모델의 전체적인 정확도를 고려하여, 불안정 모드가 구면 조화 파동을 전체적으로 지배하기 시작하는 시간을 추정하였다.

Keywords

References

  1. Baines, P.G., 1976, The stability of planetary waves on a sphere. Journal of Fluid Mechanics, 73, 193-213. https://doi.org/10.1017/S0022112076001341
  2. Browning, G.L., Hack, J.J., and Swarztrauber, P.N., 1989, A comparison of three numerical methods for solving differential equations on the sphere. Monthly Weather Review, 117, 1058-1075. https://doi.org/10.1175/1520-0493(1989)117<1058:ACOTNM>2.0.CO;2
  3. Cheong, H.B., 2000, Application of double Fourier series to the Shallow-Water Equations on a Sphere. Journal of Computational Physics, 165, 261-287. https://doi.org/10.1006/jcph.2000.6615
  4. Cheong, H.B., 2006, A dynamical core with double Fourier series: Comparison with the spherical harmonics method. Monthly Weather Review, 134, 1299-1315. https://doi.org/10.1175/MWR3121.1
  5. Cheong, H.B. and Park, J.R., 2007, Geopotential field in nonlinear balance. Journal of Korean Earth Science Society, 28, 936-946. https://doi.org/10.5467/JKESS.2007.28.7.936
  6. Cheong, H.B. and Jeong, H.B., 2015, Construction of the spherical high-order filter for applications to global meteorological data. Journal of Korean Earth Science Society, 36, 476-483. https://doi.org/10.5467/JKESS.2015.36.5.476
  7. Cheong, H.B. and Kang, H.G., 2015, Eigensolutions of the spherical Laplacian for the cubed-sphere and icosahedral-hexagonal grids. Quarterly Journal of the Royal Meteorological Society, 141, 3383-3398. https://doi.org/10.1002/qj.2620
  8. Cheong, H.B., Kong, H.J., Kang, H.G., and Lee, J.D., 2015, Fourier Finite-Element Method with Linear Basis Functions on a Sphere: Application to Elliptic and Transport Equations. Monthly Weather Review, 143, 1275-1294. https://doi.org/10.1175/MWR-D-14-00093.1
  9. Craig, R.A., 1945, A solution of the nonlinear vorticity equation for atmospheric motion. Journal of the Atmospheric Sciences, 2, 175?178.
  10. Daley, R., 1983, Linear non-divergent mass-wind laws on the sphere. Tellus, 35A, 17-27. https://doi.org/10.1111/j.1600-0870.1983.tb00181.x
  11. Haurwitz, B., 1940, The motion of atmospheric disturbances on a spherical earth. Journal of Marine Research, 3, 254-267.
  12. Hoskins, B.J., 1973, Stability of the Rossby-Haurwitz wave. Quarterly Journal of the Royal Meteorological Society, 99, 723-745. https://doi.org/10.1002/qj.49709942213
  13. Krishnamurti, T.N., Bedi, H.S., Hardiker, V.M., and Ramaswamy, L., 2006, An Introduction to Global Spectral Modeling. 2nd revised and enlarged ed. Springer, 317 pp
  14. Longuet-Higgins, M.S., 1968, The Eigenfunctions of Laplace's tidal equations over a sphere. Philosophical Transactions of the Royal Society of London, Series A, 262, 511?607.
  15. Lorenz, E.N., 1972, Barotropic instability of Rossby wave motion. Journal of Atmospheric Sciences, 29, 258-264
  16. Lynch, P., 2009, On resonant Rossby-Haurwitz triads. Tellus, 61, 438-445. https://doi.org/10.1111/j.1600-0870.2009.00395.x
  17. Neamtan, S.M., 1946, The motion of harmonic waves in the atmosphere. Journal of Meteorology, 3, 53?56. https://doi.org/10.1175/1520-0469(1946)003<0053:TMOHWI>2.0.CO;2
  18. Orszag, S.A., 1970, Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation. Journal of Atmospheric Sciences, 27, 890-895. https://doi.org/10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2
  19. Ortland, D.A., 2005, Generalized Hough modes: The structure of damped global-scale waves propagating on a mean flow with horizontal and vertical shear. Journal of Atmospheric Sciences, 62, 2674-2683. https://doi.org/10.1175/JAS3500.1
  20. Phillips, N.A., 1959, Numerical integration of the primitive equations on the hemisphere. Monthly Weather Review, 87, 333-345. https://doi.org/10.1175/1520-0493(1959)087<0333:NIOTPE>2.0.CO;2
  21. Skiba, Y.N., 2008, Nonlinear and linear instability of the Rossby-Haurwitz wave. Journal of Mathematical Sciences, 149, 1708-1725. https://doi.org/10.1007/s10958-008-0091-3
  22. Swarztrauber, P.N., 1996, Spectral transform methods for solving the shallow-water equations on the sphere. Monthly Weather Review, 124, 730-744. https://doi.org/10.1175/1520-0493(1996)124<0730:STMFST>2.0.CO;2
  23. Thuburn, J. and Li, Y., 2000, Numerical Simulations of Rossby-Haurwitz waves. Tellus, 52, 180-189.
  24. Williamson, D.L. and Browning, G.L., 1973, Comparison of grids and difference approximations for numerical weather prediction over a sphere. Journal of Applied Meteorology, 12, 264-274. https://doi.org/10.1175/1520-0450(1973)012<0264:COGADA>2.0.CO;2
  25. Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., and Swarztrauber, P.N., 1992, A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics, 102, 211-224. https://doi.org/10.1016/S0021-9991(05)80016-6