DOI QR코드

DOI QR Code

Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion

  • Zarandi, Somayeh Bagherinejad (Department of Civil Engineering, National Cheng Kung University) ;
  • Wang, Yun-Che (Department of Civil Engineering, National Cheng Kung University) ;
  • Novozhilova, Olga V. (Bauman Moscow State Technical University)
  • Received : 2015.10.03
  • Accepted : 2016.01.15
  • Published : 2016.05.25

Abstract

Plastic behaviors, based on the von Mises yield criterion, of circular discs containing a purely elastic, circular inclusion under uniform temperature loading are studied with the finite element analysis. Temperature-dependent mechanical properties are considered for the matrix material only. In addition to analyzing the plane stress and plane strain disc, a 3D thin disc and cylinder are also analyzed to compare the plane problems. We determined the elastic irreversible temperature and global plastic collapse temperature by the finite element calculations for the plane and 3D problem. In addition to the global plastic collapse, for the elastically hard case, the plane stress problem and 3D thin disc may exhibit a local plastic collapse, i.e. significant pile up along the thickness direction, near the inclusion-matrix interface. The pileup cannot be correctly modeled by the plane stress analysis. Furthermore, due to numerical difficulties originated from large deformation, only the lower bound of global plastic collapse temperature of the plane stress problem can be identified. Without considerations of temperature-dependent mechanical properties, the von Mises stress in the matrix would be largely overestimated.

Keywords

References

  1. Alexandrov, S. and Alexandrova, N. (2001), "Thermal effects on the development of plastic zones in thin axisymmetric plates", J. Strain Anal. Eng. Des., 36, 169-175. https://doi.org/10.1243/0309324011512720
  2. Alexandrov, S. and Chikanova, N. (2000), "Elastic-plastic stress-strain state of a plate with a pressed-in inclusion in thermal field", Mech. Solid., 35, 125-132.
  3. Alexandrov, S.E., Lomakin, E.V. and Jeng, Y.R. (2012), "Solution of the thermoelasticplastic problem for a thin disk of plastically compressible material subject to thermal loading", Dokl. Phys., 57, 136-139. https://doi.org/10.1134/S1028335812030081
  4. Alexandrov, S., Wang, Y.C. and Aizikovich, S. (2014), "Effect of temperature-dependent mechanical properties on plastic collapse of thin discs", J. Mech. Eng. Sci. Part C, 228(14), 2483-2487. https://doi.org/10.1177/0954406213519757
  5. Alexandrov, S., Wang, Y.C. and Jeng, Y.R. (2014), "Elastic-plastic stresses and strains in thin discs with temperature-dependent properties subject to thermal loading", J. Therm. Stress., 37, 488-505. https://doi.org/10.1080/01495739.2013.870864
  6. Altan, G., Topcu, M., Bektas, N.B. and Altan, B.D. (2008), "Elastic-plastic thermal stress analysis of an aluminum composite disc under parabolic thermal load distribution", J. Mech. Sci. Technol., 22, 2318-2327. https://doi.org/10.1007/s12206-008-0720-2
  7. Argeso, H. and Eraslan, A.N. (2008), "On the use of temperature-dependent physical properties in thermomechanical calculations for solid and hollow cylinders", Int. J. Therm. Sci., 47, 136-146. https://doi.org/10.1016/j.ijthermalsci.2007.01.029
  8. Ball, D.L. (1995), "Elastic-plastic stress analysis of cold expanded fastener holes", Fat. Fract. Eng. Mater. Struct., 18, 47-63. https://doi.org/10.1111/j.1460-2695.1995.tb00141.x
  9. Bengeri, M. and Mack, W. (1994), "The influence of the temperature dependence of the yield stress on the stress distribution in a thermally assembled elastic-plastic shrink fit", Acta Mech., 103, 243-257. https://doi.org/10.1007/BF01180229
  10. COMSOL website (2015), www.comsol.com.
  11. Eraslan, A.N. and Akis, T. (2003), "On the elastic-plastic deformation of a rotating disk subjected to radial temperature gradient", Mech. Bas. Des. Struct. Mach., 31, 529-561. https://doi.org/10.1081/SME-120023170
  12. Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion and related problems", Proc. R. Soc. Lond. A, 241, 1376-1396.
  13. Guven, U. (1997), "The fully plastic rotating disk with rigid inclusion", ZAMM, 77(9), 714-716. https://doi.org/10.1002/zamm.19970770912
  14. Guven, U. and Altay, O. (1998), "Linear hardening solid disk with rigid casing subjected to a uniform heat source", Mech. Res. Commun., 25, 679-684. https://doi.org/10.1016/S0093-6413(98)00087-1
  15. Jetteur, P. (1986), "Implicit integration algorithm for elastoplasticity in plane strain analysis", Eng. Comp., 3, 251-253. https://doi.org/10.1108/eb023664
  16. Kleiber, M. and Kowalczyk, P. (1996), "Sensitivity analysis in plane stress elasto-plasticity and elastoviscoplasticity", Comp. Meth. Appl. Mech. Eng., 137, 395-409. https://doi.org/10.1016/S0045-7825(96)01072-9
  17. Krenev, L.I., Aizikovich, S.M., Tokovyy, Y.V. and Wang, Y.C. (2015), "Axisymmetric problem on the indentation of a hot circular punch into an arbitrarily nonhomogeneous half-space", Int. J. Solid. Struct., 59, 18-28. https://doi.org/10.1016/j.ijsolstr.2014.12.017
  18. Kwon, P., Dharan, C.K.H. and Ferrari, M. (1994), "Macroscopic analysis of axisymmetric functionally gradient materials under thermal loading", ASME J. Energy Res. Tech., 116, 115-120. https://doi.org/10.1115/1.2906015
  19. Lubliner, J. (1990), Plasticity Theory, Macmillan Publishing Company, New York.
  20. Luxmoore, A.R., Light, M.F. and Evans, W.T. (1977), "A comparison of finite-element and experimental studies on plane stress crack geometries", J. Strain Anal. Eng. Des., 12, 208-216. https://doi.org/10.1243/03093247V123208
  21. Lutz, M.P. and Zimmerman, R.W. (1996), "Thermal stresses and effective thermal expansion coefficient of a functionally gradient sphere", J. Therm. Stress., 19, 39-54. https://doi.org/10.1080/01495739608946159
  22. Mack, W. and Bengeri, M. (1994), "Thermal assembly of an elastic-plastic shrink fit with solid inclusion", Int. J. Mech. Sci., 36, 699-705. https://doi.org/10.1016/0020-7403(94)90086-8
  23. Mack, W. and Plochl, M. (2000), "Transient heating of a rotating elastic-plastic shrink fit", Int. J. Eng. Sci. 38, 921-938. https://doi.org/10.1016/S0020-7225(99)00064-6
  24. Noda, N. (1991), "Thermal stresses in materials with temperature-dependent properties", Appl. Mech. Rev., 44, 383-397. https://doi.org/10.1115/1.3119511
  25. Parmaksizoglu, C. and Guven, U. (1998), "Plastic stress distribution in a rotating disk with rigid inclusion under a radial temperature gradient", Mech. Struct. Mach., 26, 9-20. https://doi.org/10.1080/08905459808945417
  26. Reddy, J.N., Chin, C.D. (1998). "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21, 593-626. https://doi.org/10.1080/01495739808956165
  27. Sayman, O. and Arman, Y. (2006), "Thermal stresses in a thermoplastic composite disc under a steady state temperature distribution", J. Rein. Plast. Comp., 25, 1709-1722. https://doi.org/10.1177/0731684406068416
  28. Simo, J.C. and Taylor, R.L. (1986), "A return mapping algorithm for plane stress elastoplasticity", Int. J. Numer. Meth. Eng., 22, 649-670. https://doi.org/10.1002/nme.1620220310
  29. Topcu, M., Altan, G., Callioglu, H. and Altan, B.D. (2008), "Thermal elastic-plastic analysis of an aluminium composite disc under linearly decreasing thermal loading", Adv. Comp. Lett., 17, 87-96.
  30. Triantafyllou, S.P. and Koumousis, V.K. (2012), "An hysteretic quadrilateral plane stress element", Arch. Appl. Mech., 82, 1675-1687. https://doi.org/10.1007/s00419-012-0682-9
  31. Valoroso, N., Rosati, L. (2009), "Consistent derivation of the constitutive algorithm for plane stress isotropic plasticity. part I: theoretical formulation", Int. J. Solid. Struct., 46, 74-91. https://doi.org/10.1016/j.ijsolstr.2008.08.012
  32. Wang, Y.C., Alexandrov, S. and Jeng, Y.R. (2013), "Effects of thickness variations on the thermal elastoplastic behavior of annular discs", Struct. Eng. Mech., 47(6), 839-856. https://doi.org/10.12989/sem.2013.47.6.839
  33. Wang, Y.C. and Ko, C.C. (2015), "Energy dissipation of steel-polymer composite beam-column connector", Steel Compos. Struct., 18(5), 1161-1176. https://doi.org/10.12989/scs.2015.18.5.1161

Cited by

  1. Residual Stress Analysis of an Orthotropic Composite Cylinder under Thermal Loading and Unloading vol.11, pp.3, 2016, https://doi.org/10.3390/sym11030320
  2. Residual stress in an elastoplastic annular disc interacting with an elastic inclusion vol.8, pp.3, 2016, https://doi.org/10.12989/csm.2019.8.3.273