DOI QR코드

DOI QR Code

Stress analysis of rotating annular hyperbolic discs obeying a pressure-dependent yield criterion

  • Jeong, Woncheol (Department of Materials Science and Engineering, Seoul National University) ;
  • Chung, Kwansoo (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Engineering Research Institute, Seoul National University)
  • 투고 : 2015.10.30
  • 심사 : 2016.03.26
  • 발행 : 2016.05.25

초록

The Drucker-Prager yield criterion is combined with an equilibrium equation to provide the elastic-plastic stress distribution within rotating annular hyperbolic discs and the residual stress distribution when the angular speed becomes zero. It is verified that unloading is purely elastic for the range of parameters used in the present study. A numerical technique is only necessary to solve an ordinary differential equation. The primary objective of this paper is to examine the effect of the parameter that controls the deviation of the Drucker-Prager yield criterion from the von Mises yield criterion and the geometric parameter that controls the profile of hyperbolic discs on the stress distribution at loading and the residual stress distribution.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea

참고문헌

  1. Alexandrova, N. and Alexandrov, S. (2004), "Elastic-plastic stress distribution in a plastically anisotropic rotating disk", Tran. ASME J. Appl. Mech., 71(3), 427-429. https://doi.org/10.1115/1.1751183
  2. Alexandrov, S., Jeng, Y. R. and Lomakin, E. (2011), "Effect of pressure-dependency of the yield criterion on the development of plastic zones and the distribution of residual stresses in thin annular disks", J. Appl. Mech.-T, ASME, 78(3), 031012. https://doi.org/10.1115/1.4003361
  3. Callioglu, H., Topcu, M. and Tarakcilar, A.R. (2006), "Elastic-plastic stress analysis of an orthotropic rotating disc", Int. J. Mech. Sci., 48, 985-990. https://doi.org/10.1016/j.ijmecsci.2006.03.008
  4. Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis for limit design", Q. Appl. Math., 10, 157-165. https://doi.org/10.1090/qam/48291
  5. Eraslan, A.N. (2002), "Inelastic deformations of rotating variable thickness solid disks by Tresca and von Mises criteria", Int. J. Comp. Eng. Sci., 3(1), 89-101. https://doi.org/10.1142/S1465876302000563
  6. Eraslan, A.N. (2003), "Elastoplastic deformations of rotating parabolic solid disks using Tresca's yield criterion", Eup. J. Mech. A/Solid., 22, 861-874. https://doi.org/10.1016/S0997-7538(03)00068-8
  7. Eraslan, A.N. and Orcan, Y. (2002a), "Elastic-plastic deformation of a rotating solid disk of exponentially varying thickness", Mech. Mater., 34, 423-432. https://doi.org/10.1016/S0167-6636(02)00117-5
  8. Eraslan, A.N. and Orcan, Y. (2002b), "On the rotating elastic-plastic solid disks of variable thickness having concave profiles", Int. J. Mech. Sci., 44, 1445-1466. https://doi.org/10.1016/S0020-7403(02)00038-3
  9. Guven, U. (1992), "Elastic-plastic stresses in a rotating annular disk of variable thickness and variable density", Int. J. Mech. Sci., 34(2), 133-138. https://doi.org/10.1016/0020-7403(92)90078-U
  10. Guven, U. (1998), "Elastic-plastic stress distribution in a rotating hyperbolic disk with rigid inclusion", Int. J. Mech. Sci., 40, 97-109. https://doi.org/10.1016/S0020-7403(97)00036-2
  11. Hojjati, M.H. and Hassani, A. (2008), "Theoretical and numerical analyses of rotating discs of non-uniform thickness and density", Int. J. Pres. Ves. Pip., 85, 694-700. https://doi.org/10.1016/j.ijpvp.2008.02.010
  12. Kao, A.S., Kuhn, H.A., Spitzig, W.A. and Richmond, O. (1990), "Influence of superimposed hydrostatic pressure on bending fracture and formability of a low carbon steel containing globular sulfides", Tran. ASME J. Eng. Mater. Technol., 112, 26-30. https://doi.org/10.1115/1.2903182
  13. Liu, P.S. (2006), "Mechanical behaviors of porous metals under biaxial tensile loads", Mater. Sci. Eng., A422, 176-183.
  14. Orcan, Y. and Eraslan, A.N. (2002), "Elastic-plastic stresses in linearly hardening rotating solid disks of variable thickness", Mech. Res. Commun., 29, 269-281. https://doi.org/10.1016/S0093-6413(02)00261-6
  15. Pirumov, A., Alexandrov, S. and Jeng, Y.R. (2013), "Enlargement of a circular hole in a disc of plastically compressible material", Acta Mech., 224(12), 2965-2976. https://doi.org/10.1007/s00707-013-0916-0
  16. Rees, D.W.A. (1999), "Elastic-plastic stresses in rotating discs by von Mises and Tresca", ZAMM, 19, 281-288.
  17. Spitzig, W.A., Sober, R.J. and Richmond, O. (1976), "The effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory", Metallurg. Tran., 7A, 1703-1710.
  18. Timoshenko, S. and Goodier, J.N. (1970), Theory of Elasticity, 3rd Edition, McGraw-Hill, New-York, USA.
  19. Wilson, C.D. (2002), "A critical reexamination of classical metal plasticity", Tran. ASME J. Appl. Mech., 69, 63-68. https://doi.org/10.1115/1.1412239
  20. You, L.H., Tang, Y.Y., Zhang, J.J. and Zheng, C.Y. (2000), "Numerical analysis of elastic-plastic rotating disks with arbitrary variable thickness and density", Int. J. Solid Struct., 37, 7809-7820. https://doi.org/10.1016/S0020-7683(99)00308-X

피인용 문헌

  1. Stress and strain fields in rotating elastic/plastic annular disks of pressure-dependent material 2018, https://doi.org/10.1080/15397734.2017.1342095