References
- Adamesku, P.A., Geld, R.A. and Mityshov, E.A. (1985), Anisotropy of Physical Properties of Metals, Mashinostroenie, Moscow, Russia. (in Russian)
- Arysenskii, Yu.М., Grechnikov, F.V. and Аryshenskii, V.Yu. (1990), "The requirements determination to the sheet anisotropy depending on further forming", Kuznechno-Shtampovochnoe Proizvodstvo, 3, 16-19. (in Russian)
- Aryshenskii, V.Yu., Grechnikov, F.V. and Zaitsev, V.М. (1990), "The determination of the material plastic deviator of the anisotropic medium by its texture parameters", Izvestia Akademii nauk SSSR. Metally, 4, 158-162. (in Russian)
- Aryshenskii, Yu.М., Kaluzhskii, I.I. and Uvarov, V.V. (1969), "Some issues of the plasticity theory of orthotropic medium", Izvestiya VUZ, Aviatsionnaya Tekhnika, 2, 15-18. (in Russian)
- Backofen, W. (1972), Deformation Processing, Addison-Wesley Longman.
- Banabic, D, Bunge, H.J., Pohlandt, K. and Tekkaya, A.E. (2000), Formability Of Metallic Materials: Plastic Anisotropy, Formability Testing, Forming Limits, Springer, Berlin, Germany.
- Banabic, D. (2010), Sheet Metal Forming Processes. Constitutive Modelling and Numerical Simulation, Springer, Berlin, Germany.
- Banabic, D., Aretz, H., Comsa, D.S. and Paraianu, L. (2005), "An improved analytical description of orthotropy in metallic sheets", Int. J. Plasticity, 21, 493-512. https://doi.org/10.1016/j.ijplas.2004.04.003
- Banabic, D., Barlat, F., Cazacu, O. and Kuwabara, T. (2010), "Advances in anisotropy and formability", Int. J. Mater. Form., 3, 165-189. https://doi.org/10.1007/s12289-010-0992-9
- Barlat, F. and Lian, J.A. (1989), "Plastic behavior and stretchability of sheet metals. Part 1: yield function for orthotropic sheets under plane stress conditions", Int. J. Plasticity, 5, 51-66. https://doi.org/10.1016/0749-6419(89)90019-3
- Barlat, F., Aretz, H., Yoon, J.W., Karabrin, M.E., Brem, J.C. and Dick, R.E. (2005), "Linear transformationbased anisotropic yield functions", Int. J. Plasticity, 21, 1009-1039. https://doi.org/10.1016/j.ijplas.2004.06.004
- Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. and Chu, E. (2003), "Plane stress yield function for aluminum alloy sheet. Part 1: Theory", Int. J. Plasticity, 19, 1297-1319. https://doi.org/10.1016/S0749-6419(02)00019-0
- Barlat, F., Lege, D.J. and Brem, J.C. (1991), "A six-component yield function for anisotropic materials", Int. J. Plasticity, 7, 693-712. https://doi.org/10.1016/0749-6419(91)90052-Z
- Barlat, F., Yoon, J.W. and Cazacu, O. (2007), "On linear transformation of stress tensors for the description of plastic anisotropy", Int. J. Plasticity, 23, 876-896. https://doi.org/10.1016/j.ijplas.2006.10.001
- Bron, F. and Besson, J. (2003), "A yield function for anisotropic materials. Application to aluminum alloys", Int. J. Plasticity, 20, 937-963.
- Cazacu, O. and Barlat, F. (2001), "Generalization of Drucker's yield criterion to orthotropy", Mathematics and Mechanics of Solids, 6, 613-630. https://doi.org/10.1177/108128650100600603
- Cazacu, O. and Barlat, F. (2003), "Application of representation theory to describe yielding of anisotropic aluminum alloys", Int. J. of Engng. Sci., 41, 1367-1385. https://doi.org/10.1016/S0020-7225(03)00037-5
- Choi, S.H., Cho, J.H., Barlat, F., Chung, K., Kwon, J.W. and Oh, K.H. (1999), "Prediction of yield surfaces of textured sheet metals", Metallurgical and materials transactions, 30(A), 377-386. https://doi.org/10.1007/s11661-999-0327-y
- Drucker, D.C. (1949), "Relation of experiments to mathematical theories of plasticity", J. Appl. Mech., 16, 349-357.
- Engler, O. and Hirsch, J., (2002) "Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications - a review", Materials Science and Engineering A, 336, 249-262. https://doi.org/10.1016/S0921-5093(01)01968-2
- Hershey, A.V. (1954), "The plasticity of an isotropic aggregate of anisotropic face centered cubic crystals", J. Appl. Mech., 21, 241-249.
- Hill, R. (1948), "A theory of the yield and plastic flow of anisotropic metals", Proc. Roy. Soc. London. Ser A., 193, 281-297. https://doi.org/10.1098/rspa.1948.0045
- Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford University Press, New-York, USA.
- Hill, R. (1979), "Theoretical plasticity of textured aggregates", Math. Proc. Cambridge Philos. Soc., 85, 179-191. https://doi.org/10.1017/S0305004100055596
- Hirsch, J. and Al-Samman, T. (2013) "Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications", Acta Materialia, 61, 818-843. https://doi.org/10.1016/j.actamat.2012.10.044
- Hosford, W.F. (1972), "A generalized isotropic yield criterion", J. Appl. Mech. Trans., ASME, 39, 607-609. https://doi.org/10.1115/1.3422732
- Hosford, W.F. (2005), Mechanical Behavior of Materials, Cambridge University Press, New-York, USA.
- Huber, M.T. (1904), "Die spezifische formanderungsarbeit als MaB der anstrengung eines materials", Czasopismo Techniczne, 22, 181.
- Hutchinson, W.B., Oscarsson, A. and Karlsson, A. (1989), "Control of microstructure and earing behaviour in aluminium alloy AA 3004 hot bands", Mater. Sci. Tech., 5, 1118-1127. https://doi.org/10.1179/mst.1989.5.11.1118
- Karafillis, A.P. and Boyce, M.C. (1993), "A general anisotropic yield criterion using bounds and a transformation weighting tensor", J. Mech. Phys. Solid., 41, 1859-1886. https://doi.org/10.1016/0022-5096(93)90073-O
- Kusiak, J., Szeliga, D. and Sztangret, L. (2012), "Modelling techniques for optimizing metal forming processes", Eds. Lin, D. Balint and M. Pietrzyk, Microstructure Evolution In Metal Forming Processes, Woodhead Publishing, Cambridge, UK.
- Landolt-Bornstein (1966), Numerical data and functional relationships in science and technology. New Series. Group III: Crystal and solid state physics. Volume 1: Elastic, piezoelectric, piezooptic and electrooptic constants of crystals, Springer, Berlin, Germany.
- Mises, R. (1913), "Mechanik der festen Korper im plastisch deformablen Zustand", Gottinger Nachrichten, Mathematisch-Physikalische, 1(4), 582-592.
- Mises, R. (1928), "Mechanik der plastischen Formanderung von Kristallen", ZAM, 8, 161-185. https://doi.org/10.1002/zamm.19280080302
- Moayyedian, F. and Kadkhodayan, M. (2016), "An advanced criterion based on non-AFR for anisotropic sheet metals", Struct. Eng. Mech., 57(6), 1015-1038. https://doi.org/10.12989/sem.2016.57.6.1015
- Nakamachi, E. and Xie, C.L. (2001) "Texture design of high-strength and high-formability steel sheet by using finite element and optimization method", Ed. K.I. Mori, Simulation of Materials Processing: Theory, Methods and Applications, Swets & Zeitlinger, Lisse, Netherlands.
- Piehler, H.R. (2009), "Crystal-plasticity fundamentals", ASM Handbook, 22A(#05215G), 232-238.
- Saint-Venant, B. (1870), "Memoire sur l'establissement des equations differentielles des mouvements interieurs operes dans les corps solides ductiles au dela des limites ou I' elasticite pourrait les ramener a leur premier etat", Comptes Rendus hebdomadaire s des Seances de l'A cademie des Sciences, 70, 473-480.
- Soare, S. and Banabic, D. (2008), "About mechanical data required to describe the anisotropy of th.in sheets to correctly predict the earing of deep-drawn cups", Int. J. Plasticity, 4, 34-37.
- Tresca, H. (1864), "Sur l'Ecoulement des Corps Solides Soumis a de Fortes Pressions", Comptes rendus de l'Academie des Sciences, 59, 754.
- Truszkowski, W. (2001), The Plastic Anisotropy in Single Crystals and Polycrystalline Metals, Springer, Netherlands.
- Woodthorpe, J. and Pearce, R. (1970), "The anomalous behavior of aluminum sheet under balance biaxial tension", Int. J. Mech. Sci., 12, 341-347. https://doi.org/10.1016/0020-7403(70)90087-1
- Zhao, Z., Mao, W., Roters, F. and Raabe, D. (2004), "A texture optimization study for minimum earing in aluminium by use of a texture component crystal plasticity finite element method", Acta Materialia, 52, 1003-1012. https://doi.org/10.1016/j.actamat.2003.03.001
Cited by
- CAD system of design and engineering provision of die forming of compressor blades for aircraft engines vol.87, 2017, https://doi.org/10.1088/1755-1315/87/8/082024
- Influence of Material Structure Crystallography on its Formability in Sheet Metal Forming Processes vol.286, 2017, https://doi.org/10.1088/1757-899X/286/1/012021
- Research of the process of axisymmetric forming of thin-walled flat blanks into the conical parts with minimal thickness variation vol.177, 2017, https://doi.org/10.1088/1757-899X/177/1/012122
- Methods and Algorithms for Computer-aided Engineering of Die Tooling of Compressor Blades from Titanium Alloy vol.302, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/302/1/012062
- Investigation into the Formation of Texture, Microstructure, and Anisotropy of Properties during Rolling Sheets of the Aluminum–Lithium 1420 Alloy vol.59, pp.1, 2018, https://doi.org/10.3103/S106782121801008X
- Effect of crystallographic texture on the forming limit in microforming of brass vol.6, pp.None, 2019, https://doi.org/10.1051/mfreview/2019024
- Formation of “undercuts” on titanium case parts vol.1064, pp.1, 2016, https://doi.org/10.1088/1757-899x/1064/1/012048