DOI QR코드

DOI QR Code

Evaluation on Chloride Binding Capacity of Mineral Mixed Paste Containing an Alkaline Activator

알칼리 활성화제를 사용한 무기질 혼합 페이스트의 염화물이온 고정화 평가

  • Cho, Gyu-Hwan (Korea Institute of Civil Engineering and Building Technology, Fire Research Institute) ;
  • Yeo, In-Hwan (Korea Institute of Civil Engineering and Building Technology, Fire Research Institute) ;
  • Ji, Dong-Hun (Korea Maritime and Ocean University, Department of Architecture and Ocean Space)
  • 조규환 (한국건설기술연구원 화재안전연구소) ;
  • 여인환 (한국건설기술연구원 화재안전연구소) ;
  • 지동헌 (한국해양대학교 해양공간건축학과)
  • Received : 2015.07.29
  • Accepted : 2016.01.22
  • Published : 2016.04.30

Abstract

It is possible to achieve high strength ranging from 40 MPa to 70 MPa in alkali-activated slag concrete (AASC), and AASC is also known to have a finer pore structure due to its high latent hydraulicity and fineness of slag cement, which makes it difficult for chloride ions to penetrate. Electrophoresis is mostly used to calculate the effective diffusion coefficient of chloride ions, and then to evaluate resistance to salt damage. Few studies have been conducted on the fixation capacity of chloride ions in AASC. For this reason, in this study the chloride fixation within the hardened paste was evaluated according to the type and the amount of alkaline activators. As a result, it was revealed that among the test specimens, the chloride fixation was greatest in the paste containing $Na_2SiO_3$. In addition, it was found that as more activator was added, a higher level of chloride fixation was observed. Through this analysis, it can be concluded that the type and the amount of alkaline activators have a high correlation with the amount of C-S-H produced.

현재 알칼리 활성 슬래그 콘크리트(AASC)는 약 40~70 MPa의 고강도화가 가능하며, 슬래그의 미세 분말도 및 잠재수경성으로 인해 공극이 치밀한 특성으로 염화물이온의 침투가 어려운 것으로 알려져 있다. 하지만 전기영동법을 사용하여 염화물이온의 유효 확산계수를 구해 염해저항성을 평가하는 경우가 대부분으로 AASC 속의 염화물이온 고정화에 대한 연구는 전무한 실정이다. 이에 본 연구에서는 알칼리 활성화제의 종류 및 첨가량에 따른 경화페이스트내의 염화물이온 고정화능력을 평가하였다. 그 결과로 $Na_2SiO_3$을 사용한 페이스트가 가장 높은 고정화능력을 나타내었으며 활성화제 첨가량이 많을수록 고정화가 높은 것으로 나타났다. 이는 활성화제 종류 및 첨가량에 따라 생성되는 경화조직인 C-S-H 생성 정도와 크게 관련성이 높은 것으로 판단된다.

Keywords

References

  1. Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., and Le Quere, C., "Persistent growth of $CO_2$ emissions and implications for reaching climate targets", Nature geoscience, Vol.7, No.10, 2014, pp.709-715. https://doi.org/10.1038/ngeo2248
  2. Palomo, A., Grutzeck, M. W., and Blanco, M. T., "Alkaliactivated fly ashes: a cement for the future", Cement and concrete research, Vol.29, No.8, 1999, pp.1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  3. Palacios, M., and Puertas, F., "Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes", Cement and concrete research, Vol.37, No.5, 2007, pp.691-702. https://doi.org/10.1016/j.cemconres.2006.11.021
  4. Puertas, F., Martinez-Ramirez, S., Alonso, S., and Vazquez, T., "Alkali-activated fly ash/slag cements: strength behaviour and hydration products", Cement and Concrete Research, Vol.30, No.10, 2000, pp.1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2
  5. Zhao, F. Q., Ni, W., Wang, H. J., and Liu, H. J., "Activated fly ash/slag blended cement", Resources, Conservation and recycling, Vol.52, No.2, 2007, pp.303-313. https://doi.org/10.1016/j.resconrec.2007.04.002
  6. Page, C., Short, N. R., and El Tarras, A., "Diffusion of chloride ions in hardened cement pastes", Cement and concrete research, Vol.11, No.3, 1981, pp.395-406. https://doi.org/10.1016/0008-8846(81)90111-3
  7. Pu, X. C., Gan, C. C., Wang, S. D., and Yang, C. H., "Summary reports of research on alkali-activated slag cement and concrete", Chongqing Institute of Architecture and Engineering, Chongqing, 1988, pp.1-6.
  8. Xu, H., and Van Deventer, J. S. J., "The geopolymerisation of alumino-silicate minerals", International Journal of Mineral Processing, Vol.59, No.3, 2000, pp.247-266. https://doi.org/10.1016/S0301-7516(99)00074-5
  9. Shi, C., Roy, D., and Krivenko, P., Alkali-activated cements and concretes. CRC press, 2006.
  10. Wang, S. D., and Scrivener, K. L., "Hydration products of alkali activated slag cement", Cement and Concrete Research, Vol.25, No.3, 1995, pp.561-571. https://doi.org/10.1016/0008-8846(95)00045-E
  11. Wang, S. D., Pu, X. C., Scrivener, K. L., and Pratt, P. L., "Alkali-activated slag cement and concrete: a review of properties and problems", Advances in Cement Research, Vol.7, No.27, 1995, pp.93-102. https://doi.org/10.1680/adcr.1995.7.27.93
  12. Glass, G. K., and Buenfeld, N. R., "Reinforced concrete-The principles of its deterioration and repair. Modern Matters- Principles & Practice in Conserving Recent Architecture", Donhead Publishing, Shaftesbury, 1996, pp.101-112.
  13. Delagrave, A., Marchand, J., Ollivier, J. P., Julien, S., and Hazrati, K., "Chloride binding capacity of various hydrated cement paste systems", Advanced Cement Based Materials, Vol.6, No.1, 1997, pp.28-35. https://doi.org/10.1016/S1065-7355(97)90003-1
  14. Mohammed, T. U., and Hamada, H., "Relationship between free chloride and total chloride contents in concrete", Cement and Concrete Research, Vol.33, No.9, 2003, pp.1487-1490. https://doi.org/10.1016/S0008-8846(03)00065-6
  15. Dhir, R. K., and Jones, M. R., "Development of chlorideresisting concrete using fly ash", fuel, Vol.78, No.2, 1999, pp.137-142. https://doi.org/10.1016/S0016-2361(98)00149-5
  16. Song, H. W., Lee, C. H., and Lee, K. C., "A study on chloride binding capacity of various blended concretes at early age", Journal of the Korea institute for structural maintenance and inspection, Vol.12, No.5, 2008, pp.133-142.
  17. Ramachandran, V. S., "Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride", Materiaux et Construction, Vol.4, No.1, 1971, pp.3-12. https://doi.org/10.1007/BF02473926
  18. Glass, G. K., Hassanein, N. M., and Buenfeld, N. R., "Neural network modelling of chloride binding", Magazine of Concrete Research, Vol.49, No.181, 1997, pp.323-335. https://doi.org/10.1680/macr.1997.49.181.323
  19. Suryavanshi, A. K., Scantlebury, J. D., and Lyon, S. B., "Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate", Cement and concrete research, Vol.26, No.5, 1996, pp.717-727. https://doi.org/10.1016/S0008-8846(96)85009-5
  20. Xu, Y., "The influence of sulphates on chloride binding and pore solution chemistry", Cement and Concrete Research, Vol.27, No.12, 1997, pp.1841-1850. https://doi.org/10.1016/S0008-8846(97)00196-8
  21. Yasuo, Arai. Cement Materials Chemistry, Revised Version. 1990, p.167.
  22. Regourd, M., Thomassin, J. H., Baillif, P., and Touray, J. C., "Blast-furnace slag hydration. Surface analysis", Cement and Concrete Research, Vol.13, No.4, 1983, pp.549-556. https://doi.org/10.1016/0008-8846(83)90014-5
  23. Talling, B., and Brandstetr, J., "Present state and future of alkali-activated slag concretes", ACI Special Publication, 1989, p.114.
  24. Greenberg, S. A., and Chang, T. N., "The hydration of tricalcium silicate", The Journal of Physical Chemistry, Vol.69, No.2, 1965, pp.553-561. https://doi.org/10.1021/j100886a033
  25. Song, S., Sohn, D., Jennings, H. M., and Mason, T. O., "Hydration of alkali-activated ground granulated blast furnace slag", Journal of Materials Science, Vol.35, No.1, 2000, pp.249-257. https://doi.org/10.1023/A:1004742027117
  26. Shi, C., and Day, R. L., "A calorimetric study of early hydration of alkali-slag cements", Cement and Concrete Research, Vol.25, No.6, 1995, pp.1333-1346. https://doi.org/10.1016/0008-8846(95)00126-W
  27. Purdon, A. O., "The action of alkalis on blast-furnace slag", Journal of the Society of Chemical Industry, Vol.59, No.9, 1940, pp.191-202. https://doi.org/10.1002/jctb.5000591202
  28. Chen, Z., and Liao, X., "The selection of stimulation agents for alkali-slag cement", In 9th International Congress on the Chemistry of Cement, 1992, pp.305-310.
  29. Peng, J., New solid water glass-slag cements. Cement, Vol.6, 1982, pp.6-10 (in Chinese).
  30. Tang, X., and Shi, C., "Alkaili-phosphorus slag binders", Sili cate Construction Products, Vol.1, 1988, pp.28-32.
  31. Ahn, J. W., Cho, J. S., Kim, H. S., Han, G. C., Han, K. S., and Kim, H., "Activation Property of Blast Furnace Slag by Alkaline Activator", J. Korean Ceram. Soc., Vol.40, No.10, 2003, pp.1005-1014. https://doi.org/10.4191/KCERS.2003.40.10.1005
  32. Jennings, H. M., "The developing microstructure in Portland cement", Advances in Cement Technology, Pergamon Press, New York, 1983, pp.349-396.
  33. Taylor, H. F. W., Barret, P., Brown, P. W., Double, D. D., Frohnsdorff, G., Johansen, V., and Young, J. F., "The hydration of tricalcium silicate", Materiaux et Construction, Vol.17, No.6, 1984, pp.457-468. https://doi.org/10.1007/BF02473986
  34. Greenberg, S. A., and Price, E. W., "The solubility of silica in solutions of electrolytes", The Journal of Physical Chemistry, Vol.61, No.11, 1957, pp.1539-1541. https://doi.org/10.1021/j150557a019
  35. Haha, M. B., Le Saout, G., and Winnefeld, F., "Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags", Cement and Concrete Research, Vol.41, No.3, 2011, pp.301-310. https://doi.org/10.1016/j.cemconres.2010.11.016