DOI QR코드

DOI QR Code

곤드레 추출물의 최종당화산물의 생성저해 및 라디칼소거 활성

Inhibitory effects of advanced glycation end products formation and free radical scavenging activity of Cirsium setidens

  • 김태완 (안동대학교 식품생명공학과) ;
  • 이재민 (경북대학교 치의과학과) ;
  • 정경한 (대구대학교 식품공학과) ;
  • 김태훈 (대구대학교 식품공학과)
  • Kim, Taewan (Department of Food Science and Biotechnology, Andong National University) ;
  • Lee, Jaemin (Department of Oral Pathology, School of Dentistry, Kyungpook National University) ;
  • Jeong, Gyeong Han (Department of Food Science and Biotechnology, Daegu University) ;
  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University)
  • 투고 : 2016.03.07
  • 심사 : 2016.04.04
  • 발행 : 2016.04.30

초록

신선한 곤드레를 메탄올로 침지 추출하여 얻어진 추출물에 대해 n-hexane, EtOAc 및 n-BuOH로 극성별 순차 용매 분획을 실시하였고, 얻어진 결과물에 대하여 DPPH와 $ABTS^+$ radical 소거능 및 최종당화물 생성 저해활성을 평가하였다. 먼저 DPPH 라디칼 소거활성은 페놀성 화합물의 함량이 상대적으로 높은 n-BuOH 가용부에서 $IC_{50}$값이 $24.3{\pm}1.7{\mu}g/mL$ 으로 우수한 DPPH 라디칼 소거능을 확인하였고, 곤드레 추출물에 존재하는 페놀성 화합물과 라디칼 소거능과의 연관성을 시사하였다. 또한 $ABTS^+$ 라디칼 소거능은 EtOAc 및 n-BuOH 분획층물의 $IC_{50}$값은 각각 $69.5{\pm}2.6{\mu}g/mL$, $25.0{\pm}3.3{\mu}g/mL$의 라디칼 소거활성이 확인되었고, 우수한 라디칼 소거 활성물질의 존재가 시사되었다. 또한, 최종당화물 생성 저해활성을 측정한 결과, n-BuOH 가용분획에서 $IC_{50}$값이 $46.0{\pm}1.5{\mu}g/mL$로 높은 생성저해활성을 나타내었으며, 이는 positive control인 aminoguanidine의 $IC_{50}$값인 $90.2{\pm}3.2{\mu}g/mL$과 비교해볼 때 우수한 활성이었으며, 다양한 화합물이 공존하는 추출물 상태의 시료를 단일물질로 정제할 경우 더욱 우수한 효능의 화합물이 존재할 가능성을 시사하였다. 향후 이들 활성물질 동정을 통한 활성물질의 구조 결정 및 활성 기작에 대한 연구가 필요하며 본 연구결과는 천연물 유래의 라디칼 소거능 및 AGEs 생성 저해능을 가지는 새로운 천연 기능성소재 발굴을 위한 기초자료로 활용가능하리라 사료된다.

Naturally occurring antioxidants, such as polyphenols are widely found in fruits, vegetables, wines, juices, and other plant-based dietary sources and are divided into several sub classes, including phenylpropanoids, flavonoids, stilbenoids, and lignans. As part of the our ongoing search for bioactive food ingredients, the antioxidant and advanced glycation end products (AGEs) formation inhibitory activities of the methanolic extract of the aerial parts of Cirsium setidens were investigated in vitro bioassay system. The antioxidant properties were evaluated through radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) ($ABTS^+$) radicals. In addition, the activity of C. setidens against diabetes complications was also tested via AGEs formation inhibition assay. The total phenolic contents were determined using a UV-VIS spectrophotometric method. All tested samples showed a dose-dependent radical scavenging and AGEs inhibitory activities. In particular, the n-butanol (BuOH)-soluble portion showed the most potent radical scavenging activities against DPPH and $ABTS^+$ radicals with $IC_{50}$ values of $24.3{\pm}1.7$ and $25.0{\pm}3.3{\mu}g/mL$, respectively. Futhermore, the inhibition of AGEs formation by the n-BuOH-soluble portion ($IC_{50}$ value; $46.0{\pm}1.5{\mu}g/mL$) was higher than that those of the soluble portions for the other solvent. The results showed that C. setidens could be considered as an effective source of natural antioxidants and other ingredients.

키워드

참고문헌

  1. Brownlee M (2005) The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 54, 1615-1625 https://doi.org/10.2337/diabetes.54.6.1615
  2. Ahmed N (2005) Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract, 67, 3-21 https://doi.org/10.1016/j.diabres.2004.09.004
  3. Huebschmann AG, Vlassara H, Regensteiner JG, Reush JE (2006) Diabetes and advanced glycoxidation end products. Diabetes Care, 29, 1420-1432 https://doi.org/10.2337/dc05-2096
  4. Huebschmann AG, Vlassara H, Regensteiner JG, Reush J (2007) Diabetes and advanced glycoxidation end products. Annual Review of Diabetes, 51-63
  5. Matsuda H, Wang T, Managi H, Yoshikawa M (2003) Structure requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioor Med Chem, 11, 5317-5323 https://doi.org/10.1016/j.bmc.2003.09.045
  6. Edelstein D, Brownlee M (1992) Mechanistic studies of advanced glycation end product inhibition by aminoguanidine. Diabetes, 41, 26-29
  7. Ceriello A (2003) New insights on oxidative stress and diabetic complications may lead to a "casual" andtioxidant therapy. Diabetes Care, 26, 1589-1596 https://doi.org/10.2337/diacare.26.5.1589
  8. Stitt A, Gardiner TA, Anderson L, Canning P, Frizzell N, Duffy N, Boyle C, Januszewski SA, Chachich M, Baynes JW, Thorpe SR (2002) The AGEs inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes, 51, 2826-2832 https://doi.org/10.2337/diabetes.51.9.2826
  9. Yokozawa T, Nakagawa T, Terasawa K (2001) Effects of oriental medicines on the production of advanced glycation end products. J Trad Med, 18, 107-112
  10. Rahbar S, Figarola JL (2003) Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys, 419, 63-79 https://doi.org/10.1016/j.abb.2003.08.009
  11. Jang DS, Lee GY, Lee Y M, Kim Y S, Sun H, Kim DH, Kim JS (2009) Flavan-3-ols having a ${\gamma}$-lactam from the roots of Actinidia arguta inhibit the formation of advanced glycation end products in vitro. Chem Pharm Bull, 57, 397-400 https://doi.org/10.1248/cpb.57.397
  12. Ito H, Li P, Koreishi M, Nagatomo A, Nishida N, Yoshida T (2014) Ellagitannin oligomers and a neolignan from pomegranate arils and their inhibitory effects on the formation of advanced glycation end products. Food Chem, 152, 323-330 https://doi.org/10.1016/j.foodchem.2013.11.160
  13. Islam MN, Ishita IJ, Jung HA, Choi JS (2014) Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem Toxicol, 69, 55-62 https://doi.org/10.1016/j.fct.2014.03.042
  14. Kang IJ, Ham SS, Chung CK, Lee SY, Oh DH, Choi KP, Do JJ (1997) Development of fermented soysauce using Cirsium setidens Nakai and comfrey. J Korean Soc Food Sci Nutr, 26, 1152-1158
  15. Chang SY, Song JH, Kwak YS, Han MJ (2012) Quality characteristics of Gondre tofu by the level of Cirsium setidens powder and storage. Korean J Food Culture, 27, 737-742 https://doi.org/10.7318/KJFC/2012.27.6.737
  16. Lee SH, Jin YS, Heo SI, Shim TH, Sa JH, Choi DS, Wang MH (2006) Composition analysis and antioxidative activity from different organs of Cirsium setidens Nakai. Korean J Food Sci Technol, 38, 571-576
  17. Larson RA (1988) The antioxidants of higher plants. Phytochemistry, 27, 969-978 https://doi.org/10.1016/0031-9422(88)80254-1
  18. Yoo YM, Nam JH, Kim MY, Choi J, Park HJ (2008) Pectolinarin and pectolinarigenin of Crisium setidens prevent the hepatic injury in rats caused by D-galactosamine via an antioxidant mechanism. Biol Pharm Bull, 31, 760-764 https://doi.org/10.1248/bpb.31.760
  19. Lee WB, Kwon HC, Cho OR, Lee KC, Choi SU, Baek NI, Lee KR (2002) Phytochemical constituents of Crisium setidens Nakai and their cytotoxicity against human cancer cell lines. Arch Pharm Res, 25, 628-635 https://doi.org/10.1007/BF02976934
  20. Ahn MJ, Hur SJ, Kim EH, Lee SH, Shin JS, Kim MK, Uchizono JA, Whang WK, Kim DS (2014) Scopoletin from Cirsium setidens increases melanin synthesis via CREB phosphorylation in B16F10 cells. Korean J Physiol Pharmacol, 18, 307-311 https://doi.org/10.4196/kjpp.2014.18.4.307
  21. Lee YJ, Kim DB, Lee JS, Cho JH, Kim BK, Choi HS, Lee BY, Lee OH (2013) Antioxidant activity and anti-adipogenic effects of wild herbs mainly cultivated in Korea. Molecules, 18, 12937-12950 https://doi.org/10.3390/molecules181012937
  22. Blois MS (1958) Antioxidant activity determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  24. Vinson JA, Howard III TB (1996) Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J Nutr Biochem, 7, 659-663 https://doi.org/10.1016/S0955-2863(96)00128-3
  25. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol, 299, 152-172 https://doi.org/10.1016/S0076-6879(99)99017-1
  26. Lee SG, Yu MH, Lee SP, Lee IS (2008) Antioxidant activities and induction of apoptosis by methanol extracts from avocado. J Korean Soc Food Sci Nutr, 37, 269-275 https://doi.org/10.3746/jkfn.2008.37.3.269
  27. Wang SY, Chang HN, Lin KT, Lo CP, Yang NS, Shyur LF (2003) Antioxidant properties and phytochemical characteristics of extracts from Lactuca indica. J Agric Food Chem, 51, 1506-1512 https://doi.org/10.1021/jf0259415
  28. Jordon-Thaden IE, Louda SM (2003) Chemistry of Cirsium and Carduus: a role in ecological risk assessment for biological control of weeds? Biochem Syst Ecol, 31, 1353-1396 https://doi.org/10.1016/S0305-1978(03)00130-3
  29. Yoo YM, Nam JH, Kim MY, Choi J, Park HJ (2008) Pectolinarin and pectolinarigenin of Cirsium setidens prevent the hepatic injury in rats caused by D-galactosamine via an antioxidant mechanism. Biol Pharm Bull, 31, 760-764 https://doi.org/10.1248/bpb.31.760
  30. Akihisa T, Kawashima K, Orido M, Akazawa H, Matsumoto M, Yamamoto A, Ogihara E, Fukatsu M, Tokuda H, Fuji J (2013) Antioxidative and melanogenesisinhibitory activities of caffeoylquinic acids and other compounds from moxa. Chem Biodiversity, 10, 313-327 https://doi.org/10.1002/cbdv.201200357
  31. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  32. Shang YF, Kim SM, Song DG, Pan CH, Lee WJ, Um BH (2010) Isolation and identification of antioxidant compounds from Ligularia fischeri. J Food Sci, 75, 530-535 https://doi.org/10.1111/j.1750-3841.2010.01714.x
  33. Sato T, Iwaki M, Shimogaito N, Wu X, Yamagishi S, Takeuchi M (2006) TAGE (toxic AGEs) theory in diabetic complications. Curr Mol Med, 6, 351-358 https://doi.org/10.2174/156652406776894536
  34. Jang DS, Lee Y M, Kim Y S, Kim JS (2006) Screening of Korean traditional herbal medicines with inhibitory activity on advanced glycation end products (AGEs) formation. Kor J Pharmacogn, 37, 48-52
  35. Jang DS, Yoo NH, Kim NH, Lee YM, Kim CS, Kim J, Kim JH, Kim JS (2010) 3,5-Di-O-caffeoyl-epi-quinic acid from the leaves and stems of Erigeron annuus inhibits protein glycation, aldose reductase, and cataractogenesis. Biol Pharm Bull, 33, 329-333 https://doi.org/10.1248/bpb.33.329

피인용 문헌

  1. Deodorization Effects and Antibacterial Activity of Codonopsis lanceolata Extract vol.17, pp.2, 2016, https://doi.org/10.20402/ajbc.2019.0288