DOI QR코드

DOI QR Code

A Study on the Characteristics of an Optical Sensor Linear Fire Detection System with Miniature Model Fire Experiment

축소 모형실험을 통한 광센서 선형 화재 감지 시스템의 특성에 관한 연구

  • Received : 2015.11.27
  • Accepted : 2016.02.19
  • Published : 2016.04.30

Abstract

In this study, we conducted a low temperature operating test and miniature tunnel model test to study the fire detection capability and properties of an early fire detection system using an optical sensor linear detector that can be installed in harsh environments such as tunnel or utility-pipe conduits which are becoming the major and national infrastructure facilities. The test showed that the optical sensor linear detector was the only one functioned properly among five thermal detectors installed at a low temperature of $-20^{\circ}C$ for 5 days. To study were analyzed adaptability of optical sensor linear detector in the windy tunnel, the operating properties of the optical sensor linear detector when the wind velocity was varied between 0 m/s and 1 m/s in a miniature tunnel model. The temperature change was high when the wind velocity was 0 m/s.

본 논문은 국내 주요 시설 및 국가 기반 시설로 변화되고 있는 터널 및 지하 공동구의 조기화재탐지설비시스템 설치에 이용되고 있는 광센서 선형 화재 감지 시스템에 대한 특성 분석을 목적으로 연구를 수행하였다. 연구 방법으로는 저온 환경인 $-20^{\circ}C$에서 5일간 5가지의 열감지기 중에서 작동 여부를 확인한 결과 광센서 선형 감지기만 작동하는 것을 알 수 있었다. 또한 터널과 같은 풍속이 발생되는 곳을 가정하여 축소 모형 터널을 제작하여 0 m/s와 1 m/s를 변수로 하여 광센서 선형 감지기의 작동 특성을 분석하였다. 그 결과로서 광센서 선형 감지 시스템의 온도 변화에 있어서는 풍속이 없을 때인 0 m/s 때의 값이 높게 나타나는 것을 알 수 있었다.

Keywords

References

  1. Ministry of Public Safety and Security, "Fire safety standards for road tunnel (NFSC 603)" (2015).
  2. EN 52-22, "Fire detection and fire alarm system-Part 22: Resettable line-type heat detectors", pp. 9-13 (2014).
  3. UL 521, "Heat detectors for fire protective signaling systems", Part. 5, pp. 50-51 (1993).
  4. ISO 7240-5:2014, "Fire detection and alarm systems-Part 5: Point-type heat detectors (2012).
  5. AS 4825-2011, "Australian Standard Tunnel fire safety" (2011).
  6. NFPA 502, "Standard for Road Tunnels, Bridges, and Other Limited Access Highways" (2011).
  7. H. Tsuneo, S. Kaoru, T. Mitsuhiro and K. Yahei, "Development of a Distributed Sensing Technique Using Brillouin Scattering", Journal of Lightwave Technology, Vol. 13, No. 7, pp. 1296-1302 (1995). https://doi.org/10.1109/50.400684
  8. Y. Sakairi, H. Uchiyama, Z. X. Li and S. Adach, "System for Measuring Temperature and Strain Separately by BOTDR and OTDR", Proc. SPIE 4920, pp. 274-284 (2002).
  9. J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale and N. Park, "Raman-based Distributed Temperature Sensor with Simplex Coding and Link Optimization", IEEE Photonics Technology Letters, Vol. 18, No. 17, pp. 1879-1881 (2006). https://doi.org/10.1109/LPT.2006.881239
  10. C. E. Lee and H. F. Taylor, "Fiber-optic Fabry-perot Temperature Sensor Using a Low-coherence Light Source", J. Lightw. Technol., Vol. 9, No. 1, pp. 129-134 (1991). https://doi.org/10.1109/50.64932
  11. Siemens, "Optical Sensor Linear Detector System Operation Manual (Korean)", pp. 11-12 (2010).
  12. LIOS Technology, "Linear Heat Detection Systems for Fire Detection Controllers OTS1000(-LR) to OTS4000 (-LR) Catalog", pp. 2-3 (2010).
  13. Bandweaver, "Fire Laser Linear Heat Detection Data Sheet", pp. 1-2 (2015).
  14. AP Sensing, "Fiber Optic Linear Heat Detection Controller Catalog" (2015).
  15. Y. K. Kang, S. R. Ahn, S. A. Lee and S. S. An, "A Study on the Analysis of Cuttent Installation Status for Underground Common Utility Tunnel", Proceedings of Koren Socitey of Civil Engineers Conference, Vol. 2007, No. 10, pp. 3011-3014 (2007).
  16. D. E. Kim, Y. C. Shin and Y. J. Kwon, "A Investigation Study on the Maintenance Management for Fire Safety According to Analysis of Fire Accident in Korea", Proceedings of the Korea Institute of Fire Science and Engineering Conference, Vol. 2008, No. 1, pp. 328-333 (2008).
  17. KOFEIS 0301, Standards of Model Approval and Inspection Technology for Fire Detectors, pp. 18-33 (2015).