References
- Ministry of Health & Welfare, http://health.mw.go.kr/HealthInfoArea/HealthInfo/View.do?idx=6830.
- Korean Neurological Association. Neurology, Seoul: Koonja Publishing Co., 2007.
- R. Sharma, R. B. Pachori, "Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions", Expert Systems with Applications, Vol.42, No.3, pp.1106-1117, 2015. https://doi.org/10.1016/j.eswa.2014.08.030
- N.F. Guler, E.D. Ubeyli, I. Guler, "Recurrent neural networksemploying Lyapunov exponents for EEG signal classification", Expert Systems with Applications, Vol.29, No.3, pp.506-514, 2005. https://doi.org/10.1016/j.eswa.2005.04.011
- E.D. Ubeyli, "Lyapunov exponents/probabilistic neuralnetworks for analysis of EEG signals", Expert Systems withApplications, Vol.37, No.2, pp.985-992, 2010. https://doi.org/10.1016/j.eswa.2009.05.078
- K. Lehnertz, C.E. Elger, "Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss", Electroencephalogr Clin Neurophysiol, Vol.95, No.2, pp.108-117, 1995. https://doi.org/10.1016/0013-4694(95)00071-6
- A. Accardo, M. Affinito, M. Carrozzi, F. Bouquet, "Use of the fractal dimension for the analysis of electroencephalographic time series", Biological Cybernetics, Vol.77, No.5, pp.339-350, 1997. https://doi.org/10.1007/s004220050394
- V. Srinivasan, C. Eswaran, N. Sriraam, "Approximate entropy-based epileptic EEG detection using artificial neural networks", IEEE Transactions on Information Technology inBiomedicine, Vol.11, No.3, pp.288-295, 2007. https://doi.org/10.1109/TITB.2006.884369
- I. Guler, E.D. Ubeyli, "Multiclass support vector machines for EEG-signal classification", IEEE Trans. Inf. Technol. Biomed. Vol.11, No.2, pp.117-126, 2007. https://doi.org/10.1109/TITB.2006.879600
- S. Chandaka, A. Chatterjee, S. Munshi, "Cross-correlation aided support vector machine classifier for classification of EEG signals", Expert Syst. Appl. Vol.36, No.2, pp.1329-1336, 2009. https://doi.org/10.1016/j.eswa.2007.11.017
- E.D. Ubeyli, "Least square support vector machine employing model-based methods coefficients for analysis of EEG signals", Expert Syst. Appl. Vol.37, No.1, pp.233-239, 2010. https://doi.org/10.1016/j.eswa.2009.05.012
- D. Hanbay, "An expert system based on least square support vector machines for diagnosis of the valvular heart disease", Expert Syst. Appl., Vol.36, No.3, pp.4232-4238, 2009. https://doi.org/10.1016/j.eswa.2008.04.010
- E.D. Ubeyli, "Wavelet/mixture of experts network structure for EEG signals classification", Expert Syst. Appl., Vol.34, No.3, pp.1954-1962, 2008. https://doi.org/10.1016/j.eswa.2007.02.006
- A. Subasi, E. Ercelebi, "Classification of EEG signals using neural network and logistic regression", Comput. Methods Programs Biomed. Vol.78, No.2, pp.87-99, 2005. https://doi.org/10.1016/j.cmpb.2004.10.009
- Abdulhamit Subasi, "EEG signal classification using wavelet feature extraction and a mixture of expert model", Expert Systems with Applications, Vol.32, No.4, pp.1084-1093, 2007. https://doi.org/10.1016/j.eswa.2006.02.005
- S. -H. Lee, J. S. Lim, "Extracting Input Features and Fuzzy Rules for Classifying Epilepsy Based on NEWFM", Journal of Internet Computing and Services, Vol.10, No.5, pp.127-133, 2009.
- S. -H. Lee, "Classification of Epilepsy Using Distance-Based Feature Selection", Journal of Digital Convergence, Vol.12. No.8, pp.321-327, 2014. https://doi.org/10.14400/JDC.2014.12.8.321
- S. -H. Lee, "Detection of Epileptic Seizure Based on Peak Using Sequential Increment Method", Journal of Digital Convergence, Vol.13. No.10, pp.287-293, 2015. https://doi.org/10.14400/JDC.2015.13.10.287
- X.-W. Tian, J. S. Lim, "Learning Distribution Graphs Using a Neuro-Fuzzy Network for Naive Bayesian Classifier", Journal of Digital Convergence, Vol.11. No.11, pp.409-414, 2013. https://doi.org/10.14400/JDPM.2013.11.11.409
- S. K. Lee, Y. S. Park, S. H. Lee, "A Depth Creation Method Using Frequency Based Focus/Defocus Analysis In Image", Journal of Digital Convergence, Vol.12. No.11, pp.309-316, 2014. https://doi.org/10.14400/JDC.2014.12.11.309
- S. -Y Choi, H. -C Ahn, "Optimized Bankruptcy Prediction through Combining SVM with Fuzzy Theory", Journal of Digital Convergence, Vol.13. No.3, pp.155-165, 2015. https://doi.org/10.14400/JDC.2015.13.3.155
- J. Kim, "HPV-type Prediction System using SVM and Partial Sequential Pattern", Journal of Digital Convergence, Vol.12. No.12, pp.365-370, 2014. https://doi.org/10.14400/JDC.2014.12.12.365
- K. -K Seo, "Sales Prediction of Electronic Appliances using a Convergence Model based on Artificial Neural Network and Genetic Algorithm", Journal of Digital Convergence, Vol.13. No.9, pp.177-182, 2015. https://doi.org/10.14400/JDC.2015.13.9.177
- H. Byeon, "The Factors of Participating in a Smoking Cessation Program using Integrated Method of Decision Tree and Neural Network Algorithm", Journal of the Korea Convergence Society, Vol. 6, No. 2, pp. 25-30, 2015.
- S.-H. Oh, "A Fuzzy Linear Programming Problem with Fuzzy Convergent Equality Constraints", Journal of the Korea Convergence Society, Vol. 6, No. 5, pp. 227-232, 2015. https://doi.org/10.15207/JKCS.2015.6.5.227