DOI QR코드

DOI QR Code

Classification of Epileptic Seizure Signals Using Wavelet Transform and Hilbert Transform

웨이블릿 변환과 힐버트 변환을 이용한 간질 파형 분류

  • Lee, Sang-Hong (Department of Computer Science & Engineering, Anyang University)
  • 이상홍 (안양대학교 컴퓨터공학과)
  • Received : 2016.02.29
  • Accepted : 2016.04.20
  • Published : 2016.04.28

Abstract

This study proposed new methods to classify normal and epileptic seizure signals from EEG signals using peaks extracted by wavelet transform(WT) and Hilbert transform(HT) based on a neural network with weighted fuzzy membership functions(NEWFM). This study has the following three steps for extracting inputs for NEWFM. In the first step, the WT was used to remove noise from EEG signals. In the second step, the HT was used to extract peaks from the wavelet coefficients. We also selected the peaks bigger than the average of peaks to extract big peaks. In the third step, statistical methods were used to extract 16 features used as inputs for NEWFM from peaks. The proposed methodology shows that accuracy, specificity, and sensitivity are 99.25%, 99.4%, 99% with 16 features, respectively. Improvement in feature selection method in view to enhancing the accuracy is planned as the future work for selecting good features from 16 features.

본 논문에서는 가중 퍼지소속함수 기반 신경망(neural network with weighted fuzzy membership functions; NEWFM) 기반의 웨이블릿 변환(wavelet transform)과 힐버트 변환(Hilbert transform)에 의해 추출한 첨점(peak)을 사용하여 뇌파(EEG)로부터 정상 파형과 간질 파형을 분류하는 새로운 방안을 제안하였다. NEWFM의 입력을 추출하는데 다음과 같은 3개의 단계가 수행되었다. 첫 번째 단계에서는 뇌파로부터 잡음을 제거하기 위해서 웨이블릿 변환을 사용하였다. 두 번째 단계에서는 웨이블릿 계수로부터 첨점(peak)을 추출하기 위해서 힐버트 변환을 사용하였다. 또한 크기가 큰 첨점을 추출하기 위해서 첨점의 평균값보다 큰 첨점만을 선택하였다. 세 번째 단계에서는 통계적 방법을 이용하여 첨점으로부터 NEWFM의 입력으로 사용할 16개의 특징을 추출하였다. NEWFM은 이들 16개의 특징을 입력으로 사용하여 99.25%, 99.4%, 99%의 정확도, 특이도, 민감도를 각각 구하였다. 향후 연구에서는 특징선택을 이용하여 16개의 특징으로부터 좋은 특징을 선택하여 정확도를 향상시킬 계획이다.

Keywords

References

  1. Ministry of Health & Welfare, http://health.mw.go.kr/HealthInfoArea/HealthInfo/View.do?idx=6830.
  2. Korean Neurological Association. Neurology, Seoul: Koonja Publishing Co., 2007.
  3. R. Sharma, R. B. Pachori, "Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions", Expert Systems with Applications, Vol.42, No.3, pp.1106-1117, 2015. https://doi.org/10.1016/j.eswa.2014.08.030
  4. N.F. Guler, E.D. Ubeyli, I. Guler, "Recurrent neural networksemploying Lyapunov exponents for EEG signal classification", Expert Systems with Applications, Vol.29, No.3, pp.506-514, 2005. https://doi.org/10.1016/j.eswa.2005.04.011
  5. E.D. Ubeyli, "Lyapunov exponents/probabilistic neuralnetworks for analysis of EEG signals", Expert Systems withApplications, Vol.37, No.2, pp.985-992, 2010. https://doi.org/10.1016/j.eswa.2009.05.078
  6. K. Lehnertz, C.E. Elger, "Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss", Electroencephalogr Clin Neurophysiol, Vol.95, No.2, pp.108-117, 1995. https://doi.org/10.1016/0013-4694(95)00071-6
  7. A. Accardo, M. Affinito, M. Carrozzi, F. Bouquet, "Use of the fractal dimension for the analysis of electroencephalographic time series", Biological Cybernetics, Vol.77, No.5, pp.339-350, 1997. https://doi.org/10.1007/s004220050394
  8. V. Srinivasan, C. Eswaran, N. Sriraam, "Approximate entropy-based epileptic EEG detection using artificial neural networks", IEEE Transactions on Information Technology inBiomedicine, Vol.11, No.3, pp.288-295, 2007. https://doi.org/10.1109/TITB.2006.884369
  9. I. Guler, E.D. Ubeyli, "Multiclass support vector machines for EEG-signal classification", IEEE Trans. Inf. Technol. Biomed. Vol.11, No.2, pp.117-126, 2007. https://doi.org/10.1109/TITB.2006.879600
  10. S. Chandaka, A. Chatterjee, S. Munshi, "Cross-correlation aided support vector machine classifier for classification of EEG signals", Expert Syst. Appl. Vol.36, No.2, pp.1329-1336, 2009. https://doi.org/10.1016/j.eswa.2007.11.017
  11. E.D. Ubeyli, "Least square support vector machine employing model-based methods coefficients for analysis of EEG signals", Expert Syst. Appl. Vol.37, No.1, pp.233-239, 2010. https://doi.org/10.1016/j.eswa.2009.05.012
  12. D. Hanbay, "An expert system based on least square support vector machines for diagnosis of the valvular heart disease", Expert Syst. Appl., Vol.36, No.3, pp.4232-4238, 2009. https://doi.org/10.1016/j.eswa.2008.04.010
  13. E.D. Ubeyli, "Wavelet/mixture of experts network structure for EEG signals classification", Expert Syst. Appl., Vol.34, No.3, pp.1954-1962, 2008. https://doi.org/10.1016/j.eswa.2007.02.006
  14. A. Subasi, E. Ercelebi, "Classification of EEG signals using neural network and logistic regression", Comput. Methods Programs Biomed. Vol.78, No.2, pp.87-99, 2005. https://doi.org/10.1016/j.cmpb.2004.10.009
  15. Abdulhamit Subasi, "EEG signal classification using wavelet feature extraction and a mixture of expert model", Expert Systems with Applications, Vol.32, No.4, pp.1084-1093, 2007. https://doi.org/10.1016/j.eswa.2006.02.005
  16. S. -H. Lee, J. S. Lim, "Extracting Input Features and Fuzzy Rules for Classifying Epilepsy Based on NEWFM", Journal of Internet Computing and Services, Vol.10, No.5, pp.127-133, 2009.
  17. S. -H. Lee, "Classification of Epilepsy Using Distance-Based Feature Selection", Journal of Digital Convergence, Vol.12. No.8, pp.321-327, 2014. https://doi.org/10.14400/JDC.2014.12.8.321
  18. S. -H. Lee, "Detection of Epileptic Seizure Based on Peak Using Sequential Increment Method", Journal of Digital Convergence, Vol.13. No.10, pp.287-293, 2015. https://doi.org/10.14400/JDC.2015.13.10.287
  19. X.-W. Tian, J. S. Lim, "Learning Distribution Graphs Using a Neuro-Fuzzy Network for Naive Bayesian Classifier", Journal of Digital Convergence, Vol.11. No.11, pp.409-414, 2013. https://doi.org/10.14400/JDPM.2013.11.11.409
  20. S. K. Lee, Y. S. Park, S. H. Lee, "A Depth Creation Method Using Frequency Based Focus/Defocus Analysis In Image", Journal of Digital Convergence, Vol.12. No.11, pp.309-316, 2014. https://doi.org/10.14400/JDC.2014.12.11.309
  21. S. -Y Choi, H. -C Ahn, "Optimized Bankruptcy Prediction through Combining SVM with Fuzzy Theory", Journal of Digital Convergence, Vol.13. No.3, pp.155-165, 2015. https://doi.org/10.14400/JDC.2015.13.3.155
  22. J. Kim, "HPV-type Prediction System using SVM and Partial Sequential Pattern", Journal of Digital Convergence, Vol.12. No.12, pp.365-370, 2014. https://doi.org/10.14400/JDC.2014.12.12.365
  23. K. -K Seo, "Sales Prediction of Electronic Appliances using a Convergence Model based on Artificial Neural Network and Genetic Algorithm", Journal of Digital Convergence, Vol.13. No.9, pp.177-182, 2015. https://doi.org/10.14400/JDC.2015.13.9.177
  24. H. Byeon, "The Factors of Participating in a Smoking Cessation Program using Integrated Method of Decision Tree and Neural Network Algorithm", Journal of the Korea Convergence Society, Vol. 6, No. 2, pp. 25-30, 2015.
  25. S.-H. Oh, "A Fuzzy Linear Programming Problem with Fuzzy Convergent Equality Constraints", Journal of the Korea Convergence Society, Vol. 6, No. 5, pp. 227-232, 2015. https://doi.org/10.15207/JKCS.2015.6.5.227