DOI QR코드

DOI QR Code

라즈베리파이를 이용한 빅 데이터 처리 학습 환경 구축

On Implementing a Learning Environment for Big Data Processing using Raspberry Pi

  • 황보람 (안양대학교 컴퓨터공학과) ;
  • 김성규 (안양대학교 컴퓨터공학과)
  • Hwang, Boram (Dept. of Computer Engineering, Anyang University) ;
  • Kim, Seonggyu (Dept. of Computer Engineering, Anyang University)
  • 투고 : 2016.02.02
  • 심사 : 2016.04.20
  • 발행 : 2016.04.28

초록

빅 데이터 처리는 데이터의 크기나 복잡도가 커서 기존의 전통적인 데이터 처리 기법으로는 다루기 힘든 데이터의 처리를 의미한다. 싱글보드 컴퓨터를 포함하는 스마트 기기의 보급은 데이터를 처리하는 방법에 많은 영향을 미치고 있으며 이 들을 활용하여 데이터를 처리하는 기법에 대한 연구가 진행되고 있다. 본 연구에서는 빅 데이터 처리에 필요한 분산처리 시스템을 데스크톱 기기 환경이 아니라 라즈베리파이를 활용하여 하둡 분산처리 환경을 구축하는 방안을 제시한다. 또한 제안하는 시스템의 다양한 테스트를 통한 성능 분석과 스케일링의 용이성을 통해 구축한 학습 환경 구성의 효율성을 보인다.

Big data processing is a broad term for processing data sets so large or complex that traditional data processing applications are inadequate. Widespread use of smart devices results in a huge impact on the way we process data. Many organizations are contemplating how to incorporate or integrate those devices into their enterprise data systems. We have proposed a way to process big data by way of integrating Raspberry Pi into a Hadoop cluster as a computational grid. We have then shown the efficiency through several experiments and the ease of scaling of the proposed system.

키워드

참고문헌

  1. IDC Digital Universe Study: Korean Digital Data Survey, 2014.
  2. G. Fox, S. Kamburugamuve, H. He, Current and Planned IoT Cloud Research at Digital Science Center, 2015.
  3. T. Plunkett et al., Oracle Big Data Handbook, Oracle Press, 2013.
  4. E. Dumbill, What is Big Data?, https://www.oreilly.com/ideas/what-is-big-data, 2012.
  5. Jung-Hoon Kim, Jun-Young Go, Keun-Ho Lee, "A Scheme of Social Engineering Attacks and Countermeasures Using Big Data based Conversion Voice Phishing", Journal of the Korea Convergence Society, Vol. 6, No. 1, pp. 85-91, 2015. https://doi.org/10.15207/JKCS.2015.6.1.085
  6. Yun-A Hur, Keun-Ho Lee, "A Study on Countermeasures of Convergence for Big Data and Security Threats to Attack DRDoS in U-Healthcare Device", Journal of the Korea Convergence Society, Vol. 6, No. 4, pp. 243-248, 2015. https://doi.org/10.15207/JKCS.2015.6.4.243
  7. I. Foster and C. Kesselman (Eds), The Grid: Blueprint for a Future Computing Infrastructure, 1998.
  8. G. Fox and D. Cannon, Computational Grids, Computing in Science and Engineering Magazine, 2001.
  9. T. Phan, L. Huang and C. Dulan, Challehge: Integrating Mobile Wireless Devices Into the Computational Grid, Proceedings of 8th international conference on Mobile Computing and Networking, 2002.
  10. L. T. Yang et. al., A Lightweight Platform for Integration of Mobile Devices into Pervasive Grids, First International Conference HPCC 2005, LNCS 3726, pp 1058-1063, 2005.
  11. Dhruba Borthakur, The Hadoop Distributed File System: Architecture and Design, Apache Software Foundations, 2007.
  12. Hadoop Apache, Hadoop Cluster Setup, The Apache Software Foundation, 2013.
  13. Chanwit Kaewkasi, Big Data Processing on ARM Cluster, Cubieboard, 2014.
  14. K. O'Dell, How-to: Select Right Hardware for Your New Hadoop Cluster, https://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/, 2013.
  15. Jonas Widriksson, How to build a 7 node Raspberry Pi Hadoop Cluster, http://www.widriksson.com/raspberry-pi-hadoop-cluster, 2014.
  16. Understanding Hadoop Cluster and the Network, http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/, 2011.
  17. S. Seshachala, Big data - Understanding Hadoop and its Ecosystem, http://devops.com/2015/06/01/bigdata-understanding-hadoop-ecosystem/, 2015.