과제정보
연구 과제 주관 기관 : National Natural Science Foundation
참고문헌
- Amey, S.L., Johnson, D.A., Miltenberger, M.A. and Farzam, H. (1998), "Predicting the service life of concrete marine structures: an environmental methodology", ACI Struct. J., 95(2), 205-214.
- Angst, U., Elsener, B., Larsen, C.K. and Vennesland, O. (2009), "Critical chloride content in reinforced concrete-a review", Cement Concrete Res., 39(12), 1122-1138. https://doi.org/10.1016/j.cemconres.2009.08.006
- Arya, C., Buenfeld, N. and Newman, J. (1990), "Factors influencing chloride-binding in concrete", Cement Concrete Res., 20(2), 291-300. https://doi.org/10.1016/0008-8846(90)90083-A
- Arya, C. and Xu, Y. (1995), "Effect of cement type on chloride binding and corrosion of steel in concrete", Cement Concrete Res., 25(4), 893-902. https://doi.org/10.1016/0008-8846(95)00080-V
- Baroghel-Bouny, V., Wang, X., Thiery, M., Saillio, M. andd Barberon, F. (2012), "Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis", Cement Concrete Res., 42(9), 1207-1224. https://doi.org/10.1016/j.cemconres.2012.05.008
- Boulfiza, M., Sakai, K., Banthia, N. and Yoshida, H. (2003), "Prediction of chloride ions ingress in uncracked and cracked concrete", ACI Mater. J., 100(1).
- Brouwers, H. (2004), "The work of Powers and Brownyard revisited: Part 1", Cement Concrete Res., 34(9), 1697-1716. https://doi.org/10.1016/j.cemconres.2004.05.031
- Castellote, M., Andrade, C. and Alonso, C. (1999), "Chloride-binding isotherms in concrete submitted to non-steady-state migration experiments", Cement Concrete Res., 29(11), 1799-1806. https://doi.org/10.1016/S0008-8846(99)00173-8
- Chen, W. (2016), "Study on chloride binding and transportation of mortars in salt-fog wetting-drying environments (in Chinese)", (Master of Science), Zhejiang University.
- De Weerdt, K., Orsakova, D. and Geiker, M. (2014), "The impact of sulphate and magnesium on chloride binding in Portland cement paste", Cement Concrete Res., 65, 30-40. https://doi.org/10.1016/j.cemconres.2014.07.007
- Delagrave, A., Marchand, J., Ollivier, J.P., Julien, S. and Hazrati, K. (1997), "Chloride binding capacity of various hydrated cement paste systems", Adv. Cement Mater., 6(1), 28-35. https://doi.org/10.1016/S1065-7355(97)90003-1
- Florea, M. and Brouwers, H. (2012), "Chloride binding related to hydration products: Part I: Ordinary Portland Cement", Cement Concrete Res., 42(2), 282-290. https://doi.org/10.1016/j.cemconres.2011.09.016
- Fu, C., Jin, X., Ye, H. and Jin, N. (2015), "Theoretical and experimental investigation of loading effects on chloride diffusion in saturated concrete", J. Adv. Concrete Tech., 13(1), 30-43. https://doi.org/10.3151/jact.13.30
- Hirao, H., Yamada, K., Takahashi, H. and Zibara, H. (2005), "Chloride binding of cement estimated by binding isotherms of hydrates", J. Adv. Concrete Tech., 3(1), 77-84. https://doi.org/10.3151/jact.3.77
- Ipavec, A., Vuk, T., Gabrovsek, R. and Kaucic, V. (2013), "Chloride binding into hydrated blended cements: The influence of limestone and alkalinity", Cement Concrete Res., 48, 74-85. https://doi.org/10.1016/j.cemconres.2013.02.010
- Kayali, O., Khan, M. and Ahmed, M.S. (2012), "The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag", Cement Concrete Compos., 34(8), 936-945. https://doi.org/10.1016/j.cemconcomp.2012.04.009
- Kulik, D., Berner, U. and Curti, E. (2003), "Modelling chemical equilibrium partitioning with the GEMSPSI code", PSI Scientific Report, 4, 109-122.
- Lee, M.K., Jung, S.H. and Oh, B.H. (2013), "Effects of carbonation on chloride penetration in concrete", ACI Mater. J., 110(5).
- Loser, R., Lothenbach, B., Leemann, A. and Tuchschmid, M. (2010), "Chloride resistance of concrete and its binding capacity-Comparison between experimental results and thermodynamic modeling", Cement Concrete Compos., 32(1), 34-42. https://doi.org/10.1016/j.cemconcomp.2009.08.001
- Lothenbach, B. and Gruskovnjak, A. (2007), "Hydration of alkali-activated slag: thermodynamic modelling", Adv. Cement Res., 19(2), 81-92. https://doi.org/10.1680/adcr.2007.19.2.81
- Lothenbach, B., Scrivener, K. and Hooton, R. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001
- Luo, R., Cai, Y., Wang, C. and Huang, X. (2003), "Study of chloride binding and diffusion in GGBS concrete", Cement Concrete Res., 33(1), 1-7. https://doi.org/10.1016/S0008-8846(02)00712-3
- Martin-Pérez, B., Zibara, H., Hooton, R. and Thomas, M. (2000), "A study of the effect of chloride binding on service life predictions", Cement Concrete Res., 30(8), 1215-1223. https://doi.org/10.1016/S0008-8846(00)00339-2
- Mien, T.V., Nawa, T. and Stitmannaithum, B. (2014), "Chloride binding isotherms of various cements basing on binding capacity of hydrates", Comput. Concrete, 13(6), 695-707. https://doi.org/10.12989/cac.2014.13.6.695
- Mien, T.V., Stitmannaithum, B. and Nawa, T. (2009), "Simulation of chloride penetration into concrete structures subjected to both cyclic flexural loads and tidal effects", Comput. Concrete, 6(5), 421-435. https://doi.org/10.12989/cac.2009.6.5.421
- Neville, A. (1995), "Chloride attack of reinforced concrete: an overview", Mater. Struct., 28(2), 63-70. https://doi.org/10.1007/BF02473172
- Richardson, I. (2008), "The calcium silicate hydrates", Cement Concrete Res., 38(2), 137-158. https://doi.org/10.1016/j.cemconres.2007.11.005
- Sergi, G., Yu, S. and Page, C. (1992), "Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment", Mag Concrete Res., 44(158), 63-69. https://doi.org/10.1680/macr.1992.44.158.63
- Tang, L. and Nilsson, L.O. (1993), "Chloride binding capacity and binding isotherms of OPC pastes and mortars", Cement Concrete Res., 23(2), 247-253. https://doi.org/10.1016/0008-8846(93)90089-R
- Thomas, M., Hooton, R., Scott, A. and Zibara, H. (2012), "The effect of supplementary cementitious materials on chloride binding in hardened cement paste", Cement Concrete Res., 42(1), 1-7. https://doi.org/10.1016/j.cemconres.2011.01.001
- Vu, K.A.T. and Stewart, M.G. (2000), "Structural reliability of concrete bridges including improved chloride-induced corrosion models", Struct. Safe., 22(4), 313-333. https://doi.org/10.1016/S0167-4730(00)00018-7
- Yang, Z., Fischer, H. and Polder, R. (2012), Possibilities for improving corrosion protection of reinforced concrete by modified hydrotalcites-a literature review Advances in Modeling Concrete Service Life (pp. 95-105), Springer.
- Ye, H., Fu, C., Jin, N. and Jin, X. (2015), "Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition", Comput. Concrete, 15(2), 183-198. https://doi.org/10.12989/cac.2015.15.2.183
- Ye, H., Jin, N., Jin, X. and Fu, C. (2012), "Model of chloride penetration into cracked concrete subject to drying-wetting cycles", Constr. Build. Mater., 36, 259-269. https://doi.org/10.1016/j.conbuildmat.2012.05.027
- Ye, H., Jin, X., Fu, C., Jin, N., Xu, Y. and Huang, T. (2016), "Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation", Constr. Build. Mater., 112, 457-463. https://doi.org/10.1016/j.conbuildmat.2016.02.194
- Ye, H., Tian, Y., Jin, N., Jin, X. and Fu, C. (2013), "Influence of cracking on chloride diffusivity and moisture influential depth in concrete subjected to simulated environmental conditions", Constr. Build. Mater., 47, 66-79. https://doi.org/10.1016/j.conbuildmat.2013.04.024
- Zibara, H. (2001), "Binding of external chlorides by cement pastes", Ph.D. Thesis, Universityof Toronto.
- Zibara, H., Hooton, R., Thomas, M. and Stanish, K. (2008), "Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures", Cement Concrete Res., 38(3), 422-426. https://doi.org/10.1016/j.cemconres.2007.08.024
피인용 문헌
- Chloride penetration into concrete damaged by uniaxial tensile fatigue loading vol.125, 2016, https://doi.org/10.1016/j.conbuildmat.2016.08.096
- Simple Technique for Tracking Chloride Penetration in Concrete Based on the Crack Shape and Width under Steady-State Conditions vol.9, pp.2, 2017, https://doi.org/10.3390/su9020282
- Chloride ingress profiles and binding capacity of mortar in cyclic drying-wetting salt fog environments vol.127, 2016, https://doi.org/10.1016/j.conbuildmat.2016.10.059
- Structure, orientation, and dynamics of water-soluble ions adsorbed to basal surfaces of calcium monosulfoaluminate hydrates vol.20, pp.38, 2018, https://doi.org/10.1039/C8CP03872D
- Kinetic analysis and thermodynamic simulation of alkali-silica reaction in cementitious materials pp.00027820, 2018, https://doi.org/10.1111/jace.15961
- Correlating the Chloride Diffusion Coefficient and Pore Structure of Cement-Based Materials Using Modified Noncontact Electrical Resistivity Measurement vol.31, pp.3, 2019, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002616
- Modeling of chloride diffusion in concrete considering wedge-shaped single crack and steady-state condition vol.19, pp.2, 2017, https://doi.org/10.12989/cac.2017.19.2.211
- The effect of microscopic cracks on chloride diffusivity of recycled aggregate concrete vol.170, pp.None, 2016, https://doi.org/10.1016/j.conbuildmat.2018.03.045
- Stochastic characteristics of reinforcement corrosion in concrete beams under sustained loads vol.25, pp.5, 2020, https://doi.org/10.12989/cac.2020.25.5.447
- Chloride Diffusivity, Fatigue Life, and Service Life Analysis of RC Beams under Chloride Exposure vol.32, pp.6, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0003184
- Macrocell Corrosion of Steel in Concrete under Carbonation, Internal Chloride Admixing and Accelerated Chloride Penetration Conditions vol.14, pp.24, 2016, https://doi.org/10.3390/ma14247691