DOI QR코드

DOI QR Code

Experimental study of shear behavior of planar nonpersistent joint

  • Haeri, Hadi (Department of Mining Engineering, Bafgh Branch, Islamic Azad University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Lazemi, Hossein Ali (Department of Mining Engineering, Bafgh Branch, Islamic Azad University)
  • Received : 2015.05.02
  • Accepted : 2016.02.13
  • Published : 2016.05.25

Abstract

The present article discusses the effect of the ratio of bridge surface to total shear surface, number of bridge areas and normal stress on the failure behavior of the planar non-persistent open joints. Totally, 38 models were prepared using plaster and dimensions of $15cm{\times}15cm{\times}15cm$. The bridge area occupied $45cm^2$, $90cm^2$ and $135cm^2$ out of the shear surface. The number of rock bridges increase in fixed area. Two similar samples were prepared on every variation in the rock bridges and tested for direct shear strength under two high and low normal loads. The results indicated that the failure pattern and the failure mechanism is mostly influenced by the ratio of bridge surface to total shear surface and normal stress so that the tensile failure mode change to shear failure mode by increasing in the value of introduced parameters. Furthermore, the shear strength and shear stiffness are closely related to the ratio of bridge surface to total shear surface, number of bridge areas and normal stress.

Keywords

References

  1. Ayatollahi, M.R. and Sistaninia, M. (2011), "Mode II fracture study of rocks using Brazilian disk specimens", Int. J. Rock Mech. Min. Sci., 48(5), 819-826. https://doi.org/10.1016/j.ijrmms.2011.04.017
  2. ASTM (1971), Standard method of test for splitting tensile resistance of cylindrical concrete specimens, ASTM designation C496-71.
  3. ASTM (1986), Test method for unconfined compressive resistance of intact rock core specimens, ASTM designation D2938-86.
  4. Barragan, B., Gettu, R., Agullo, L. and Zerbino, R. (2006), "Shear failure of steel fiber-reinforced concrete based on push-off tests", ACI Mater. J., 103(4), 251-257.
  5. Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9
  6. Eberhardt, E., Kaiser, P.K. and Stead, D. (2002), "Numerical analysis of progressive failure in natural rock slopes", ISRM International Symposium-EUROCK 2002, International Society for Rock Mechanics.
  7. Dai, F., Xia, K., Zheng, H. and Wang, Y.X. (2011), "Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen", Eng. Fract. Mech., 78(15), 2633-2644. https://doi.org/10.1016/j.engfracmech.2011.06.022
  8. Einstein, H.H., Veneziano, D., Baecher, G.B. and O'reilly, K.J. (1983), "The effect of discontinuity persistence on rock slope stability", Proceedings of the International journal of rock mechanics and mining sciences & geomechanics abstracts., 20(5), 227-236, Pergamon.
  9. Gehle, C. and Kutter, H.K. (2003), "Breakage and shear behaviour of intermittent rock joints", Int. J. Rock Mech. Min. Sci., 40(5), 687-700. https://doi.org/10.1016/S1365-1609(03)00060-1
  10. Ghazvinian, A., Nikudel, M.R. and Sarfarazi, V. (2007), "Effect of rock bridge continuity and area on shear behavior of joints", 11th congress of the International Society for Rock Mechanics, Lisbon, Portugal.
  11. Ghazvinian, A., Nikudel, M.R. and Sarfarazi, V. (2007), "Effect of rock bridge continuity and area on shear behavior of joints", Proceedings of the Second Half Century of Rock Mechanics, Three Volume Set: 11th Congress of the International Society for Rock Mechanics, 1, 247, CRC Press.
  12. Haeri, H. (2015), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  13. Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract., 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x
  14. Jiang, Z., Wan, S., Zhong, Z., Li, M. and Shen, K. (2014), "Determination of mode-I fracture toughness and non-uniformity for GFRP double cantilever beam specimens with an adhesive layer", Eng. Fract. Mech., 128, 139-156. https://doi.org/10.1016/j.engfracmech.2014.07.011
  15. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semi-circular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
  16. Li, Y.P., Chen L.Z. and Wang Y.H. (2005), "Experimental research on pre-Cracked marble", Int. J. Solid. Struct., 42, 2505-2016. https://doi.org/10.1016/j.ijsolstr.2004.09.033
  17. Mughieda, O.S. and Khawaldeh, I. (2004), "Scale effect on engineering properties of open non-persistent rock joints under uniaxial loading", Bolgesel Kaya Mekanigi Sempozyumu/ROCKMEC′2004-VIIth Regional Rock Mechanics Symposium, Sivas, Turkiye.
  18. Mughieda, O.S. and Khawaldeh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geol. Eng., 24(4), 985-999. https://doi.org/10.1007/s10706-005-8352-0
  19. Noël, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  20. Ozcebe, G., Ersoy, U. and Tankut, T. (1999), "Minimum flexural reinforcement for T-beams made of higher strength concrete", Can. J. Civil Eng., 26(5), 525-534. https://doi.org/10.1139/l99-013
  21. Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8
  22. Shen, B. (1995), "The mechanism of fracture coalescence in compression-experimental study and numerical simulation", Eng. Fract. Mech., 51(1), 73-85. https://doi.org/10.1016/0013-7944(94)00201-R
  23. Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stresses in experiments", J. Geophys. Res.-all series, 100, 5975-5975. https://doi.org/10.1029/95JB00040
  24. Takeuchi, K. (1991), "Mixed-mode fracture initiation in granular brittle materials", M.S. Thesis, Massachusetts Institute of Technology, Cambridge.
  25. Wang, Q.Z, Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004
  26. Wang, Q.Z., Gou, X.P., Fan, H. (2012), "The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption", Eng. Fract. Mech., 82, 1-8. https://doi.org/10.1016/j.engfracmech.2011.11.001
  27. Wang, T., Dai, J.G., Zheng, J.J. (2015), "Multi-angle truss model for predicting the shear deformation of RC beams with low span-effective depth ratios", Eng. Struct., 91, 85-95. https://doi.org/10.1016/j.engstruct.2015.02.035
  28. Wong, R.H.C., Chau, K.T. Tang, C.A. and Lin, P. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-Part I: experimental approach", Int. J. Rock Mech. Min. Sci., 38(7), 909-924. https://doi.org/10.1016/S1365-1609(01)00064-8
  29. Yoshihara, H. (2013), "Initiation and propagation fracture toughness of solid wood under the mixed Mode I/II condition examined by mixed-mode bending test", Eng. Fract. Mech., 104, 1-15. https://doi.org/10.1016/j.engfracmech.2013.03.023

Cited by

  1. Crack analysis of pre-cracked brittle specimens under biaxial compression vol.51, pp.6, 2015, https://doi.org/10.1134/S1062739115060344
  2. Numerical simulation of hydraulic fracturing in circular holes vol.18, pp.6, 2016, https://doi.org/10.12989/cac.2016.18.6.1135
  3. Direct and indirect methods for determination of mode I fracture toughness using PFC2D vol.20, pp.1, 2016, https://doi.org/10.12989/cac.2017.20.1.039
  4. Experimental and numerical study of shear crack propagation in concrete specimens vol.20, pp.1, 2016, https://doi.org/10.12989/cac.2017.20.1.057
  5. The effect of compression load and rock bridge geometry on the shear mechanism of weak plane vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.431
  6. A fracture mechanics simulation of the pre-holed concrete Brazilian discs vol.66, pp.3, 2016, https://doi.org/10.12989/sem.2018.66.3.343
  7. Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.445
  8. Simulation of crack initiation and propagation in three point bending test using PFC2D vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.453
  9. Simulation of the tensile failure behaviour of transversally bedding layers using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.493
  10. Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.505
  11. Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.505
  12. The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test vol.22, pp.4, 2016, https://doi.org/10.12989/cac.2018.22.4.373
  13. Numerical simulation of shear mechanism of concrete specimens containing two coplanar flaws under biaxial loading vol.22, pp.4, 2018, https://doi.org/10.12989/sss.2018.22.4.459
  14. PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test vol.68, pp.4, 2016, https://doi.org/10.12989/sem.2018.68.4.497
  15. Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D vol.22, pp.5, 2016, https://doi.org/10.12989/sss.2018.22.5.611
  16. Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials vol.69, pp.1, 2016, https://doi.org/10.12989/sem.2019.69.1.011
  17. Numerical simulation of the effect of bedding layer on the tensile failure mechanism of rock using PFC2D vol.69, pp.1, 2019, https://doi.org/10.12989/sem.2019.69.1.043
  18. Simulation of the tensile behaviour of layered anisotropy rocks consisting internal notch vol.69, pp.1, 2016, https://doi.org/10.12989/sem.2019.69.1.051
  19. Laboratory investigation of mechanical behavior of granite samples containing discontinuous joints through direct shear tests vol.12, pp.3, 2019, https://doi.org/10.1007/s12517-019-4278-3
  20. Geometric and mechanical properties of a shear-formed fracture occurring in a rock bridge between discontinuous joints vol.79, pp.3, 2020, https://doi.org/10.1007/s10064-019-01669-x
  21. Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.239
  22. Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation vol.26, pp.6, 2016, https://doi.org/10.12989/cac.2020.26.6.565