DOI QR코드

DOI QR Code

Buckling analysis of embedded concrete columns armed with carbon nanotubes

  • Arani, Ali Jafarian (Department of Civil Engineering, Khomein Branch, Islamic Azad University) ;
  • Kolahchi, Reza (Department of Civil Engineering, Khomein Branch, Islamic Azad University)
  • Received : 2016.01.09
  • Accepted : 2016.03.21
  • Published : 2016.05.25

Abstract

As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli and Timoshenko beam theories. The characteristics of the equivalent composite being determined using mixture rule. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

Keywords

References

  1. Bae, S., Mieses, A.M. and Bayrak, O. (2005), "Inelastic buckling of reinforcing bars", J. Struct. Eng., 131(2), 314-321. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(314)
  2. Bajc, U., Saje, M., Planinc, I. and Bratina, S. (2015), "Semi-analytical buckling analysis of reinforced concrete columns exposed to fire", Fire Safety J., 71, 110-122. https://doi.org/10.1016/j.firesaf.2014.11.018
  3. Brush, D.O. and Almroth, B.O. (1975), Buckling of bars, plates and shells, McGraw-Hill, New York.
  4. Dhakal, R.P. and Maekawa, K. (2002a), "Modeling for postyield buckling of reinforcement", J. Struct. Eng., 128(9), 1139-1147. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1139)
  5. Dhakal, R.P. and Maekawa, K. (2002b), "Reinforcement stability and fracture of cover concrete in reinforced concrete members", J. Struct. Eng., 128(10), 1253-1262. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1253)
  6. El-Helou, R.G. and Aboutaha, R.S. (2015), "Analysis of rectangular hybrid steel-GFRP reinforced concrete beam columns", Comput. Concrete, 16(10), 245-260. https://doi.org/10.12989/cac.2015.16.2.245
  7. Engesser, F. (1889), "Uber die knickfestigkeit gerader stabe", Z. Archit. Ing. Ver. Hann., 35, 455-462.
  8. Ghorbanpour Arani, A., Abdollahian, M. and Kolahchi, R. (2015), "Nonlinear vibration of embedded smart composite microtube conveying fluid based on modified couple stress theory", Polym. Composite., 36(7), 1314-1324. https://doi.org/10.1002/pc.23036
  9. Ghorbanpour Arani, A., Kolahchi, R. and Maraghi, Z.K. (2013), "Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory", Appl. Math. Model., 37(14), 7685-7707. https://doi.org/10.1016/j.apm.2013.03.020
  10. Ghorbanpour Arani, A., Kolahchi, R. and Zarei, M.S. (2015), "Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory", Compos. Struct., 132, 506-526. https://doi.org/10.1016/j.compstruct.2015.05.065
  11. Hwang, J.H., Lee, D.H., Park, M.K., Choi, S.H., Kim, K.S. and Pan, Z. (2015), "Shear performance assessment of steel fiber reinforcedprestressed concrete members", Comput. Concrete, 16(9), 825-846. https://doi.org/10.12989/cac.2015.16.6.825
  12. Kolahchi, R. and Moniribidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
  13. Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015b), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001
  14. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015a), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
  15. Krauberger, N., Saje, M., Planinc, I. and Bratina, S. (2007), "Exact buckling load of a restrained RC column", Struct. Eng. Mech., 27(3), 293-310. https://doi.org/10.12989/sem.2007.27.3.293
  16. Lopes, A.V., Lou, T. and Lopes, S.M. (2015), "Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams", Comput. Concrete, 15(3), 391. https://doi.org/10.12989/cac.2015.15.3.391
  17. Mau, S.T. (1990), "Effect of tie spacing oninelastic buckling of reinforcing bars", ACI Struct. J., 87(6), 617-677.
  18. Mau, S.T. and El-Mabsout, M. (1989), "Inelastic buckling of reinforcing bars", J. Eng. Mech., 115(1), 1-17. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(1)
  19. Pantazopoulou, S.J. (1998), "Detailing for reinforcement stability in RC members", J. Struct. Eng., 124(6), 623-632. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(623)
  20. Shanley, F.R. (1947), "Inelastic column theory", J. Aeronaut. Sci., 14, 261-264. https://doi.org/10.2514/8.1346
  21. Vijai, K., Kumutha, R. and Vishnuram, B.G. (2015), "Flexural behaviour of fibre reinforced geopolymer concrete composite beams", Comput. Concrete, 15(3), 437-459. https://doi.org/10.12989/cac.2015.15.3.437

Cited by

  1. Thermo-electro-mechanical vibration analysis of piezoelectric nanoplates resting on viscoelastic foundation with various boundary conditions vol.131-132, 2017, https://doi.org/10.1016/j.ijmecsci.2017.08.031
  2. Vibration analysis of concrete foundations retrofit with NFRP layer resting on soil medium using sinusoidal shear deformation theory vol.103, 2017, https://doi.org/10.1016/j.soildyn.2017.09.018
  3. Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories vol.157, 2016, https://doi.org/10.1016/j.compstruct.2016.08.032
  4. Nonlinear dynamic responses of triple-layered graphene sheets under moving particles and an external magnetic field vol.136, 2018, https://doi.org/10.1016/j.ijmecsci.2017.12.047
  5. Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.787
  6. Validation simulation for free vibration and buckling of cracked Mindlin plates using phase-field method pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1430262
  7. Thermal postbuckling of shear deformable CNT-reinforced composite plates with tangentially restrained edges and temperature-dependent properties pp.1530-7980, 2018, https://doi.org/10.1177/0892705718804588
  8. Approximation of surface wave velocity in smart composite structure using Wentzel–Kramers–Brillouin method pp.1530-8138, 2018, https://doi.org/10.1177/1045389X18786464
  9. Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles vol.24, pp.1, 2016, https://doi.org/10.12989/was.2017.24.1.043
  10. Estimating of water pressure to avoid hydraulic fracturing in water pressure test vol.19, pp.2, 2016, https://doi.org/10.12989/cac.2017.19.2.171
  11. Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects vol.19, pp.3, 2016, https://doi.org/10.12989/cac.2017.19.3.333
  12. Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis vol.24, pp.5, 2017, https://doi.org/10.12989/was.2017.24.5.431
  13. Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods vol.19, pp.6, 2016, https://doi.org/10.12989/cac.2017.19.6.745
  14. Time-dependent buckling analysis of SiO2 nanoparticles reinforced concrete columns exposed to fire vol.20, pp.2, 2016, https://doi.org/10.12989/cac.2017.20.2.119
  15. Seismic response of concrete columns with nanofiber reinforced polymer layer vol.20, pp.3, 2016, https://doi.org/10.12989/cac.2017.20.3.361
  16. Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory vol.13, pp.3, 2016, https://doi.org/10.12989/eas.2017.13.3.241
  17. Pressure analysis in grouting and water pressure test to achieving optimal pressure vol.13, pp.4, 2016, https://doi.org/10.12989/gae.2017.13.4.685
  18. Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods vol.20, pp.6, 2017, https://doi.org/10.12989/cac.2017.20.6.671
  19. Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load vol.13, pp.6, 2016, https://doi.org/10.12989/eas.2017.13.6.589
  20. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
  21. A novel four variable refined plate theory for wave propagation in functionally graded material plates vol.27, pp.1, 2018, https://doi.org/10.12989/scs.2018.27.1.109
  22. Improved HSDT accounting for effect of thickness stretching in advanced composite plates vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.061
  23. Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2016, https://doi.org/10.12989/gae.2018.14.6.519
  24. Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis vol.27, pp.4, 2016, https://doi.org/10.12989/scs.2018.27.4.465
  25. A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.599
  26. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2016, https://doi.org/10.12989/anr.2018.6.2.147
  27. Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods vol.21, pp.6, 2016, https://doi.org/10.12989/cac.2018.21.6.717
  28. Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials vol.27, pp.6, 2016, https://doi.org/10.12989/scs.2018.27.6.777
  29. Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter vol.28, pp.1, 2016, https://doi.org/10.12989/scs.2018.28.1.013
  30. The critical buckling load of reinforced nanocomposite porous plates vol.67, pp.2, 2016, https://doi.org/10.12989/sem.2018.67.2.115
  31. Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2016, https://doi.org/10.12989/sem.2018.67.3.291
  32. Numerical study for vibration response of concrete beams reinforced by nanoparticles vol.67, pp.3, 2018, https://doi.org/10.12989/sem.2018.67.3.311
  33. A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2016, https://doi.org/10.12989/sem.2018.67.4.369
  34. Effect of homogenization models on stress analysis of functionally graded plates vol.67, pp.5, 2018, https://doi.org/10.12989/sem.2018.67.5.527
  35. Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory vol.15, pp.3, 2016, https://doi.org/10.12989/eas.2018.15.3.285
  36. Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods vol.15, pp.4, 2016, https://doi.org/10.12989/eas.2018.15.4.361
  37. A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams vol.27, pp.4, 2016, https://doi.org/10.12989/was.2018.27.4.269
  38. Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation vol.27, pp.5, 2018, https://doi.org/10.12989/was.2018.27.5.311
  39. Critical buckling loads of carbon nanotube embedded in Kerr's medium vol.6, pp.4, 2016, https://doi.org/10.12989/anr.2018.6.4.339
  40. A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations vol.30, pp.1, 2016, https://doi.org/10.12989/scs.2019.30.1.013
  41. Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel vol.16, pp.1, 2016, https://doi.org/10.12989/eas.2019.16.1.055
  42. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2016, https://doi.org/10.12989/was.2019.28.1.019
  43. Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory vol.28, pp.1, 2016, https://doi.org/10.12989/was.2019.28.1.049
  44. A novel refined shear deformation theory for the buckling analysis of thick isotropic plates vol.69, pp.3, 2019, https://doi.org/10.12989/sem.2019.69.3.335
  45. Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load vol.7, pp.1, 2016, https://doi.org/10.12989/acc.2019.7.1.051
  46. Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2016, https://doi.org/10.12989/sem.2019.69.5.511
  47. Vibration analysis of different material distributions of functionally graded microbeam vol.69, pp.6, 2016, https://doi.org/10.12989/sem.2019.69.6.637
  48. Effect of agglomerated zirconia-toughened mullite on the mechanical properties of giant cane fiber mat epoxy laminated composites vol.70, pp.2, 2019, https://doi.org/10.12989/sem.2019.70.2.233
  49. A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.325
  50. Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation vol.7, pp.3, 2016, https://doi.org/10.12989/acc.2019.7.3.151
  51. Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure vol.7, pp.3, 2019, https://doi.org/10.12989/anr.2019.7.3.181
  52. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2016, https://doi.org/10.12989/scs.2019.31.5.503
  53. Robust quasi 3D computational model for mechanical response of FG thick sandwich plate vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.571
  54. Vibration analysis of nonlocal porous nanobeams made of functionally graded material vol.7, pp.5, 2019, https://doi.org/10.12989/anr.2019.7.5.351
  55. Interfacial imperfection study in pres-stressed rotating multiferroic cylindrical tube with wave vibration analytical approach vol.6, pp.10, 2016, https://doi.org/10.1088/2053-1591/ab3880
  56. Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings vol.33, pp.1, 2016, https://doi.org/10.12989/scs.2019.33.1.081
  57. Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity vol.7, pp.6, 2016, https://doi.org/10.12989/anr.2019.7.6.431
  58. Nonlinear Vibration of Carbon Nanotube Reinforced Composite Truncated Conical Shells in Thermal Environment vol.19, pp.12, 2016, https://doi.org/10.1142/s021945541950158x
  59. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2016, https://doi.org/10.12989/was.2019.29.6.371
  60. The effect of nanoparticle in reduction of critical fluid velocity in pipes conveying fluid vol.9, pp.1, 2016, https://doi.org/10.12989/acc.2020.9.1.103
  61. Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM vol.8, pp.1, 2016, https://doi.org/10.12989/anr.2020.8.1.059
  62. Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory vol.25, pp.2, 2020, https://doi.org/10.12989/cac.2020.25.2.155
  63. Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach vol.34, pp.4, 2020, https://doi.org/10.12989/scs.2020.34.4.599
  64. Numerical study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model vol.9, pp.3, 2016, https://doi.org/10.12989/acc.2020.9.3.301
  65. Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
  66. A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
  67. Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT vol.25, pp.4, 2016, https://doi.org/10.12989/cac.2020.25.4.343
  68. Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2016, https://doi.org/10.12989/sss.2020.25.4.409
  69. Effects of elastic medium on buckling of microtubules due to bending and torsion vol.9, pp.5, 2016, https://doi.org/10.12989/acc.2020.9.5.491
  70. Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes vol.8, pp.4, 2016, https://doi.org/10.12989/anr.2020.8.4.307
  71. A mathematical approach for the effect of the rotation on thermal stresses in the piezo-electric homogeneous material vol.25, pp.5, 2020, https://doi.org/10.12989/cac.2020.25.5.471
  72. A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach vol.21, pp.5, 2016, https://doi.org/10.12989/gae.2020.21.5.471
  73. Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation vol.25, pp.6, 2020, https://doi.org/10.12989/cac.2020.25.6.485
  74. Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory vol.26, pp.1, 2016, https://doi.org/10.12989/cac.2020.26.1.031
  75. Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation vol.26, pp.1, 2016, https://doi.org/10.12989/cac.2020.26.1.053
  76. Bending analysis of functionally graded porous plates via a refined shear deformation theory vol.26, pp.1, 2016, https://doi.org/10.12989/cac.2020.26.1.063
  77. Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation vol.26, pp.3, 2016, https://doi.org/10.12989/cac.2020.26.3.213
  78. Bayesian in-situ parameter estimation of metallic plates using piezoelectric transducers vol.26, pp.6, 2016, https://doi.org/10.12989/sss.2020.26.6.735
  79. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2016, https://doi.org/10.12989/cac.2021.27.1.073
  80. Parametric vibration analysis of single-walled carbon nanotubes based on Sanders shell theory vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.165
  81. Bending and free vibration analysis of functionally graded sandwich plates: An assessment of the Refined Zigzag Theory vol.23, pp.3, 2021, https://doi.org/10.1177/1099636219843970
  82. Buckling control of concrete beams reinforced with smart nanoparticles using numerical methods vol.25, pp.8, 2016, https://doi.org/10.1080/19648189.2019.1578268
  83. Shear strengthening of RC short columns with CFRP grid-reinforced FRC matrix: Cyclic loading tests vol.47, pp.None, 2022, https://doi.org/10.1016/j.jobe.2021.103915