초록
장기간의 기후 자료가 누적되다 보면 자료의 수집과정에서 시스템적 오류나 측정 장비의 고장 등으로 인하여 연속적 결측이 종종 발생하게 된다. 연속적인 결측 형태를 갖는 경우 시계열 결측 자료를 대체하는 것에 어려움이 따른다. 이러한 경우 참조시계열을 이용하여 결측값을 대체할 수 있다. 참조시계열은 결측이 발생한 시계열과 관련성이 높은 주변지점의 시계열로 구성할 수 있다. 본 연구에서는 결측값을 대체시킬 수 있는 3가지 결측복원 기법-수정된 정규화비율 방법, 회귀 방법, IDW 방법-을 비교하는 시뮬레이션을 수행하였다. 우리나라 14개 지점의 기후관측소의 일평균기온값을 대상으로 비교한 결과 남쪽 해안가에 위치한 기후관측소의 자료에 대해서는 IDW 방법이 가장 정확한 것으로 나타났으며, 그 외 지역의 기후관측소 자료에 대해서는 회귀 방법이 가장 정확한 것으로 나타났다.
Consecutive missing values are likely to occur in long climate data due to system error or defective equipment. Furthermore, it is difficult to impute missing values. However, these complicated problems can be overcame by imputing missing values with reference time series. Reference time series must be composed of similar time series to time series that include missing values. We performed a simulation to compare three missing imputation methods (the adjusted normal ratio method, the regression method and the IDW method) to complete the missing values of time series. A comparison of the three missing imputation methods for the daily mean temperatures at 14 climatological stations indicated that the IDW method was better thanx others at south seaside stations. We also found the regression method was better than others at most stations (except south seaside stations).