DOI QR코드

DOI QR Code

연속적 결측이 존재하는 기온 자료에 대한 결측복원 기법의 비교

A comparison of imputation methods for the consecutive missing temperature data

  • 투고 : 2016.03.23
  • 심사 : 2016.03.31
  • 발행 : 2016.04.30

초록

장기간의 기후 자료가 누적되다 보면 자료의 수집과정에서 시스템적 오류나 측정 장비의 고장 등으로 인하여 연속적 결측이 종종 발생하게 된다. 연속적인 결측 형태를 갖는 경우 시계열 결측 자료를 대체하는 것에 어려움이 따른다. 이러한 경우 참조시계열을 이용하여 결측값을 대체할 수 있다. 참조시계열은 결측이 발생한 시계열과 관련성이 높은 주변지점의 시계열로 구성할 수 있다. 본 연구에서는 결측값을 대체시킬 수 있는 3가지 결측복원 기법-수정된 정규화비율 방법, 회귀 방법, IDW 방법-을 비교하는 시뮬레이션을 수행하였다. 우리나라 14개 지점의 기후관측소의 일평균기온값을 대상으로 비교한 결과 남쪽 해안가에 위치한 기후관측소의 자료에 대해서는 IDW 방법이 가장 정확한 것으로 나타났으며, 그 외 지역의 기후관측소 자료에 대해서는 회귀 방법이 가장 정확한 것으로 나타났다.

Consecutive missing values are likely to occur in long climate data due to system error or defective equipment. Furthermore, it is difficult to impute missing values. However, these complicated problems can be overcame by imputing missing values with reference time series. Reference time series must be composed of similar time series to time series that include missing values. We performed a simulation to compare three missing imputation methods (the adjusted normal ratio method, the regression method and the IDW method) to complete the missing values of time series. A comparison of the three missing imputation methods for the daily mean temperatures at 14 climatological stations indicated that the IDW method was better thanx others at south seaside stations. We also found the regression method was better than others at most stations (except south seaside stations).

키워드

참고문헌

  1. Azman, M. A., Zakaria, R., and Radi, N. F. A. (2015). Estimation of missing rainfall data in Pahang using modified spatial interpolation weighting methods, The 2nd ISM International Statistical Conferencd 2014 (ISM-II): Empowering the Applications of Statistical and Mathematical Sciences, 1643, 65-72
  2. Di Piazza, A., Lo Conti, F., Noto, L. V., Viola, F., and La Loggia, G. (2011). Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy, International Journal of Applied Earth Observation and Geoinformation, 13, 396-408. https://doi.org/10.1016/j.jag.2011.01.005
  3. Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G., and Vose, R. S. (2010). Comprehensive automated quality assurance of daily surface observations, National Climatic Data Center, 49, 1615-1633.
  4. Jung, S.-Y. (2014). A study of consecutive missing value imputation method using reference series in time series, M.S. Thesis, Department of Statistics, Graduate School of Dongguk University, Seoul, Korea.
  5. Lee, Y.-S. (2003). Data Mining Cookbook by Olivia Parr Rud, Kyowoo Publishing Company, Seoul.
  6. Legates, D. R., and McCabe Jr., G. J. (1999). Evaluating the use of "goodness-of -fit" measures in hydrologic and hydroclimatic model evaluation, Water Resources Research, 35, 233-241. https://doi.org/10.1029/1998WR900018
  7. Paulhus, J. L. H. and Kohler, M. A. (1952). Interpolation of missing precipitation records, Monthly Weather Review, 80, 129-133. https://doi.org/10.1175/1520-0493(1952)080<0129:IOMPR>2.0.CO;2
  8. Teegavarapu, R. S. V. and Chandramouli, V. (2005). Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records, Journal of Hydrology, 312, 191-206. https://doi.org/10.1016/j.jhydrol.2005.02.015
  9. You, J. S., Hubbard, K. G., and Goddard, S. (2008). Comparison of methods for spatially estimating station temperatures in a quality control system, International Journal of Climatology, 28, 777-787. https://doi.org/10.1002/joc.1571
  10. Young, K. (1992). A three-way model for interpolating for monthly precipitation values, Monthly Weather Review, 120, 2561-2569. https://doi.org/10.1175/1520-0493(1992)120<2561:ATWMFI>2.0.CO;2