References
- Choi, Y. and Kendziorski, C. (2009). Statistical methods for gene set co-expression analysis, Bioinformatics, 25, 2780-2786. https://doi.org/10.1093/bioinformatics/btp502
- Dinu, I., Potter, J. D., Mueller, T., Liu, Q., Adewale, A. J., Jhangri, G. S., Einecke, G., Famulski, K. S., Halloran, P. and Yasui, Y. (2007). Improving gene set analysis of microarray data by SAM-GS, BMC Bioinformatics, 8, 242. https://doi.org/10.1186/1471-2105-8-242
- Draghici, S., Khatri, P., Martins, R. P., Ostermeier, G. C., and Krawetz, S. A. (2003). Global functional profiling of gene expression, Genomics, 81, 98-104. https://doi.org/10.1016/S0888-7543(02)00021-6
- Efron, B. and Tibshirani, R. (2007). On testing the significance of sets of genes, Annals of Applied Statistics, 1, 107-129. https://doi.org/10.1214/07-AOAS101
- Goeman, J., van de Geer, S., de Kort, F., and Houwelingen, H. (2004). A global test for groups of genes: testing association with a clinical outcome, Bioinformatics, 20, 93-99. https://doi.org/10.1093/bioinformatics/btg382
- Goeman, J., Oosting, J., Cleton-Jansen, A. M., Anninga, J. K., and van Houwelingen, H. C. (2005). Testing association of a pathway with survival using gene expression data, Bioinformatics, 21, 1950-1957. https://doi.org/10.1093/bioinformatics/bti267
- Jung, S. and Kim, S. (2014). EDDY: a novel statistical gene set test method to detect differential genetic dependencies, Nucleic Acids Research, 42, e60. https://doi.org/10.1093/nar/gku099
- Khatri, P., Bhavsar, P., Bawa, G., and Draghici, S. (2004). Onto-Tools: an ensemble of web-accessible, ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments, Nucleic Acids Research, 32, 449-456.
- Kim, B. S., Jang, J. S., Kim, S. C., and Lim, J. (2009). A report on the inter-gene correlations in cDNA microarray data sets, The Korean Journal of Applied Statistics, 22, 617-626. https://doi.org/10.5351/KJAS.2009.22.3.617
- Kim, S. Y. and Volsky, D. (2005). PAGE: parametric analysis of gene set enrichment, BMC Bioinformatics, 6, 1471-2105.
- Klebanov, L. and Yakovlev, A. (2007). Diverse correlation structures in gene expression data and their utility in improving statistical inference, The Annals of Applied Statistics, 1, 538-559. https://doi.org/10.1214/07-AOAS120
- Lai, Y., Wu, B., Chen, L., Zhao, H. (2004). A statistical method for identifying differential gene-gene coexpression patterns, Bioinformatics, 20, 3146-3155. https://doi.org/10.1093/bioinformatics/bth379
- Lee, S. H., Lee, S. K., and Lee, K. H. (2009). Developing a parametric method for testing the significance of gene sets in microarray data analysis, Communications for Statistical Applications and Methods, 397-408. https://doi.org/10.5351/CKSS.2009.16.3.397
- Ma, H., Schadt, E. E., Kaplan, L. M., and Zhao, H. (2011). COSINE: condition-specific sub-network identification using a global optimization method, Bioinformatics, 27, 1290-1298. https://doi.org/10.1093/bioinformatics/btr136
- Maciejewski, H. (2014). Gene set analysis methods: statistical models and methodological differences, Briefings in Bioinformatics, 15, 504-518. https://doi.org/10.1093/bib/bbt002
- Meyer, C. (2001). Matrix Analysis and Applied Linear Algebra, Society for industrial and applied mathematics (SIAM), Philadelphia.
- Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D., and Groop, L. C. (2003). PGC-1-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nature Genetics, 34, 267-273. https://doi.org/10.1038/ng1180
- Newton, M. A., Quintana, F. A., den Boon, J. A. (2007). Random set methods identify distinct aspects of the enrichment signal in gene-set analysis, Annals of Applied Statistics, 1, 85-106. https://doi.org/10.1214/07-AOAS104
- Qui, X., Klebanov, L., and Yakovlev, A. (2005). Correlation between gene expression levels and limitations of the empirical Bayes methodology for finding differentially expressed genes, Statistical Applications in Genetics and Molecular Biology, 4, Ariticle 34.
- Rahmatallah, Y., Emmert-Streib, F. and Glazko, G. (2014). Gene sets net correlations analysis (GSNCA): a multivariate differential coexpression test for gene sets, Bioinformatics, 30, 360-368. https://doi.org/10.1093/bioinformatics/btt687
- Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, In Proceedings of the National Academy of Sciences, 102, 15545-15550. https://doi.org/10.1073/pnas.0506580102
- Tesson, B. M., Breitling, R., and Jansen, R. C. (2010). DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules, BMC Bioinformatics, 11, 497. https://doi.org/10.1186/1471-2105-11-497
- Tusher, V. G. (2001). Significance analysis of microarrays applied to the ionizing radiation response, In Proceedings of the National Academy of Sciences, 98, 5116-5121. https://doi.org/10.1073/pnas.091062498