DOI QR코드

DOI QR Code

Modular Exponentiation Using a Variable-Length Partition Method

가변길이 분할 기법을 적용한 모듈러 지수연산법

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 과학기술대학 멀티미디어공학과)
  • Received : 2015.08.28
  • Accepted : 2016.04.08
  • Published : 2016.04.30

Abstract

The times of multiplication for encryption and decryption of cryptosystem is primarily determined by implementation efficiency of the modular exponentiation of $a^b$(mod m). The most frequently used among standard modular exponentiation methods is a standard binary method, of which n-ary($2{\leq}n{\leq}6$) is most popular. The n-ary($1{\leq}n{\leq}6$) is a square-and-multiply method which partitions $b=b_kb_{k-1}{\cdots}b_1b_{0(2)}$ into n fixed bits from right to left and squares n times and multiplies bit values. This paper proposes a variable-length partition algorithm that partitions $b_{k-1}{\cdots}b_1b_{0(2)}$ from left to right. The proposed algorithm has proved to reduce the multiplication frequency of the fixed-length partition n-ary method.

암호학의 암호 생성과 해독의 곱셈 횟수는 대부분 $a^b$(mod m) 모듈러 지수연산의 효율적 구현여부로 결정된다. 표준 모듈러 지수연산법으로는 1-ary법인 이진법이 있으며, n-ary($2{\leq}n{\leq}6$)법이 많이 적용되고 있다. n-ary($1{\leq}n{\leq}6$)법은 $b=b_kb_{k-1}{\cdots}b_1b_{0(2)}$에 대해 R-L 방향으로 n비트로 고정된 분할을 하고, n회 제곱과 비트값 곱셈을 수행하는 제곱-곱셉법이다. 본 논문에서는 $b_{k-1}{\cdots}b_1b_{0(2)}$에 대해 L-R 방향으로 가변길이로 분할하는 방법을 적용한다. 또한, 개변길이의 제곱과 곱셈 또는 나눗셈을 적용한다. 제안된 가변길이 분할법은 고정길이 분할법인 n-ary법에 비해 곱셈 수행횟수를 감소시킬 수 있었다.

Keywords

References

  1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to Algorithms," 2nd Edition, McGrew-Hill Book Company, ISBN: 9780262033848, 2005.
  2. M. Alfred, P. C. Oorschot, AND S. A. Vanstone, "Handbook of Applied Cryptography," CRC Press, ISBN: 0-8493-8523-7, 1996.
  3. S. T. Klein, "Should One Always Use Repeated Squaring for Modular Exponentiation?," Information Processing Letters, Vol. 106, No. 6, pp. 232-237, doi:10.1016/j.ipl.2007.11.016, Jun. 2008.
  4. D. M. Gordon, "A Survey of Fast Exponentiation Methods," Journal of Algorithms, Vol. 27, No. 1, pp. 129-146, doi:10.1006/jagm.1997.0913, Apr. 1998.
  5. P. Montgomery, "Modular Multiplication Without Trial Division," Math. Computation, Vol. 44, pp. 519-521, doi: 10.1090/S0025-5718-1985-0777282-X, Apr. 1985.
  6. G. Saldamli and C. K. Koc, "Spectral Modular Exponentiation," Proc. of the 18th IEEE Symposium on Computer Arithmetic, pp. 123-132, doi: 10.1109/ARITH.2007.34, Jun. 2007.
  7. V. Gopal, J. Guilford, E. Ozturk, W. Feghali, G. Wolrich, and M. Dixon, "Fast and Constant-Time Implementation of Modular Exponentiation," 28th International Symposium on Reliable Distributed Systems, Niagara Falls, New York, U.S.A., Sep. 2009.
  8. L. Zhong, "Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance," Technical Report CE-01-ZJL, Dept. of Electrical Engineering, Princeton University, 2001.
  9. J. Berstel, D. Perrin, and C. Reutenauer, 'Codes and Automata," Cambridge University Press, ISBN-13:978-0521888318, 2009.