DOI QR코드

DOI QR Code

Dynamic Interaction Analysis between Maglev Train with Airgap Control Algorithm Based on Acceleration Feedback and Guideway

가속도 되먹임 기반 부상공극제어기법을 이용한 자기부상열차-가이드웨이 상호작용 해석

  • Lee, Jin Ho (Planning and Strategy Center, Korea Railroad Research Institute) ;
  • Kim, Sung Il (High-speed Railroad Systems Research Center, Korea Railroad Research Institute)
  • 이진호 (한국철도기술연구원 미래전략센터) ;
  • 김성일 (한국철도기술연구원 고속철도연구본부)
  • Received : 2016.02.29
  • Accepted : 2016.04.06
  • Published : 2016.04.29

Abstract

Since the variations of electromagnetic suspension forces of maglev trains have close relations with the acceleration of the levitated bodies, it is basic to control the levitation forces using the measured acceleration of vehicles. In this study, an airgap control algorithm based on acceleration feedback is applied to maglev trains and a dynamic analysis method is developed considering maglev train-guideway interaction. Using the developed method, dynamic behaviors of a maglev train-guideway interaction system are investigated. It is observed from the analysis that the current design guidelines can be satisfied when the proposed airgap control algorithm is employed. Using the contorl algorithm, the current guidelines can be improved and economical maglev railway guideway structures can be designed.

가속도를 계측하여 부상력을 제어하는 것은 가장 기본적인 자기부상열차의 부상공극 제어기법이다. 이에 이 연구에서는 가속도 되먹임에 기반한 부상공극제어기법을 자기부상열차에 적용하고, 이를 고려한 자기부상열차-가이드웨이 상호작용계의 동적거동 해석기법을 개발한다. 개발된 해석기법을 사용하여 실제 자기부상열차-가이드웨이 상호작용계의 동적해석을 수행하였다. 해석 결과를 통해 가속도 되먹임에 기반한 부상공극제어기법을 적용하여도 현재까지 제안된 자기부상열차 설계 기준을 충분히 만족함을 확인하였다. 즉, 현재 제안된 자기부상열차 가이드웨이 구조물의 설계 기준을 보완하여 안전하면서도 경제적인 구조물의 건설이 가능해질 것으로 예상된다.

Keywords

References

  1. Jung, M.-R., Min, D.-J., Lee, J.-S., Kwon, S.-D., Kim, M.-Y. (2011) Dynamic Interaction Analysis of Train and Bridge According to Modeling Methods of Maglev Trains, J. Comput. Struct. Eng. Inst. Korea, 24, pp.167-175.
  2. Korea Rail Network Authority (2010) Structural Design Report for Demonstration Line of Urban Maglev Program.
  3. Korea Rail Network Authority (2013) Railway Design Code.
  4. Lee, J.H., Kim, L.H., Kim, S.I. (2014) Verification of an Analysis Method for Maglev Train-Guideway Interaction Using Field Measurement Data, J. Korean Soc. Railway, 17, pp.233-244. https://doi.org/10.7782/JKSR.2014.17.4.233
  5. Lee, H.W., Kim, K.C., Lee, J. (2006) Review of Maglev Train Technologies, IEEE Transactions on Magnetics, 42, pp.1917-1925. https://doi.org/10.1109/TMAG.2006.875842
  6. Lee, J.S., Kwon, S.D., Yeo, I.H., Kim, M.Y. (2009) The Dynamic Interaction Analysis of Actively Controlled Maglev and Guideway Bridge Systems, J. Korean Soc. Civil Eng., 29, pp.523-533.
  7. Sinha, P.K. (1987) Electromagnetic Suspension: Dynamics and Control, Peter Peregrinus Ltd., London, United Kingdom.
  8. Yau, J.D. (2010) Vibration control of Maglev Vehicles Traveling over a Flexible Guideway, J. Sound & Vib., 321, pp.184-200.
  9. Zhou, D., Hansen, C.H., Li, J., Chang, W. (2010) Review of Coupled Vibration Problems in EMS Maglev Vehicles, Int. J. Acoust. & Vib., 15, pp.10-23.