DOI QR코드

DOI QR Code

황해중앙이질대 퇴적물에 대한 중광물 예비 연구

Preliminary Study of Heavy Minerals in the Central Yellow Sea Mud

  • 이부영 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 이희일 (한국해양과학기술원 해저환경자원연구본부)
  • Lee, Bu Yeong (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yi, Hi Il (Marine Geology and Geophysics, Korea Institute of Ocean Science and Technology)
  • 투고 : 2015.12.15
  • 심사 : 2016.03.10
  • 발행 : 2016.03.31

초록

실체현미경과 전계방출형 주사전자현미경 관찰, 에너지분산형 분광분석기를 이용한 화학 분석을 통하여 황해중앙이질대에서 채취된 46개의 표층 퇴적물 시료 내에 포함되어 있는 중광물의 종류, 함량, 광물 특성 및 분포를 연구하였으며, 이 결과를 바탕으로 조립질 퇴적물의 기원지를 유추하였다. 황해중앙이질대 표층 퇴적물 내에 존재하는 중광물들은 녹렴석군 광물, 각섬석군 광물, 석류석군 광물, 저어콘, 금홍석, 스핀 순으로 산출하는데, 특히 녹렴석군 광물과 각섬석군 광물의 비율이 50% 이상으로 매우 높다. 녹렴석군 광물은 녹렴석, 각섬석군 광물은 에데나이트, 석류석군 광물은 알만딘이 대부분인 것으로 판단된다. 황해중앙이질대를 $124^{\circ}E$ 기준으로 구분할 경우, 동부지역이 서부지역에 비해 녹렴석 및 풍화에 강한 (저어콘 + 금홍석)의 함량은 높고, 풍화에 약한 각섬석의 함량은 낮게 나타난다. 이는 서부지역의 퇴적물은 기원지에 가까운 곳에, 동부지역의 퇴적물은 기원지로부터 먼 곳에 퇴적되었을 것임을 시사해준다. 추후 황해로 유입되는 강 퇴적물과 해양 퇴적물에 대한 추가적인 중광물 연구가 진행되어야만 정확한 기원지와 퇴적과정에 대한 해석을 할 수 있을 것으로 여겨진다.

We studied the heavy minerals in 46 surface sediments collected from the Central Yellow Sea Mud (CYSM) to characterize the type, abundance, mineralogical properties and distribution pattern using the stereo-microscopy, field-Emission scanning electron microscopy (FE SEM) and chemical analysis through the energy dispersive spectrometer (EDS). Heavy mineral assemblages are primarily composed of epidote group, amphibole group, garnet group, zircon, rutile and sphene in descending order. Epidote group and amphibole group minerals account for more than 50% of total heavy minerals. The minerals in epidote group, amphibole group and garnet group in studied area are epidote, edenite and almandine, respectively. When we divided the CYSM into two regions by $124^{\circ}E$, the eastern region contain higher contents of epidote and (zircon + rutile), which are more resistant to weathering but lower of amphibole, which is less resistant to weathering than the western region. Based on this results, it is possible to estimate that the eastern region sediments are transported for a long distance while western region sediments are transported for a short distance from the source area. In the future, the additional study on the heavy minerals in river sediments flowing into the Yellow Sea and much more samples for marine sediments must be carried out to interpret exactly the provenance and sedimentation process.

키워드

참고문헌

  1. Chae, S.C., Shin, H.Y., Jung, J.S., Jang, Y.N., and Bae, I.K. (2007) Mineralogy of beach sand in Jaeun Island, Shinangun, Chonranamdo. Journal of the Mineralogical Society of Korea, 20, 289-302 (in Korean with English abstract).
  2. Chae, S.C., Shin, H.Y., Bae, I.K., Kwon, S.W., Lee, S.J., Kim, W.T., Lee, C.O., and Jang, Y.N. (2009) Separation and mineralogy of marine sand near Haeju bay, North Korea. Journal of the Mineralogical Society of Korea, 22, 217-227 (in Korean with English abstract).
  3. Chae, S.C., Shin, H.Y., Bae, I.K., Kwon, S.W., Lee, C.O., Kim, J.Y., and Jang, Y.N. (2011) Mineralogy of sea sand near Ongjingun through the separation processes. Journal of the Mineralogical Society of Korea, 24, 1-17 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2011.24.1.001
  4. Cheong, D.K., Park, S.Y., and Kim, B.H. (2007) Provenance study of the sedimentary rocks in the Cretaceous Gongju Basin based on heavy mineral assemblages and their surface textures. Journal of the Geological Society of Korea, 43, 381-394 (in Korean with English abstract).
  5. Eisenmann, M.D. (2001) Elutriation Technology in Heavy mineral separations. M. Sci. Thesis, Virginia Polytechnic Institute, Virginia, USA, 168p.
  6. Hegde, V.S., Shalini, G., and Gosavi Kanchanagouri, D. (2006) Provenance of heavy minerals with special reference to ilmenite of the Honnavar beach, central west coast of India. Current Science, 91, 644-648.
  7. Hubert, J.F. (1962) A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Research, 32, 440-450.
  8. Jiang, X.J., Li, S.Q., and Shen, S.X. (2000) Features of heavy minerals in the YSDP102 Core on the southeast continental shelf of the south Yellow Sea. Marine Geology & Quaternary Geology, 20, 27-31 (in Chinese).
  9. Kang, T.G. (2003) Beach and sanddune development along the coastline of the Chungcheong-Namdo province. Journal of Korean Earth Science Society, 24, 568-577 (in Korean with English abstract).
  10. Kettanah, Y.A. and Wach, G.D. (2006) The provenance of heavy minerals in the Mesozoic and Tertiary formations at the Venture B-13 Borehole, offshore Nova Scotia, Canada. American Association of Petroleum Geologists Annual Convention, Houston, Texas, 1-9.
  11. Kein, C. and Dutrow, B. (2009) Manual of Mineral Science (23th Ed.). John Woley & Sons, INC., New York, 444-498.
  12. Lee, H.B., Oh, J.K., Kim, S.W., and Lee, S.R. (1997) Sedimentologic and mineralogic study in surface sediment off Biin Bay, west coast of Korea. Journal of Korean Earth Science Society, 18, 259-266 (in Korean with English abstract).
  13. Lee, H.J., Jeong, K.S., Han, S.J., and Bahk, K.S. (1988) Heavy minerals indicative of Holocene transgression in the southeastern Yellow Sea. Continental Shelf Research, 8, 255-266. https://doi.org/10.1016/0278-4343(88)90032-5
  14. Lee, H.J. and Chough, S.K. (1989) Sediment distribution, dispersal and budget in the Yellow Sea. Marine Geology, 87, 195-205. https://doi.org/10.1016/0025-3227(89)90061-3
  15. Lee, Y.H., Chi, J.M., and Oh, J.K. (2004) Geochemical relationship between stream sediments and regional geology of the upstream for the Hahn River drainage basin, Korea. Economic and Environmental Geology, 37, 153-171 (in Korean with English abstract).
  16. Li, C.X., Zhang, J.Q., Fan, D.D., and Deng, B. (2001) Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, East China. Marine Geology, 173, 97-120. https://doi.org/10.1016/S0025-3227(00)00169-9
  17. Mohamed, A.W. and Dar, M.A. (2005) Cluster analysis and mineral provenances of recent sediments and their relation to the continental margin activity along the Red sea coast, Egypt. Egyptian Journal of Aquatic Research, 31, 29-44.
  18. Morton, A.C. (1984) Stability of detrital heavy minerals in Tertiary sandstones of the North Sea Basin. Clay Minerals, 19, 287-308. https://doi.org/10.1180/claymin.1984.019.3.04
  19. Morton, A.C. (1985) Heavy minerals in provenance studies. In: Zuffa, G.G. (Ed.), Provenance of Arenites. Reidel, Dordrecht, 249-277.
  20. Morton, A.C. and Hallsworth, C.R. (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124, 3-29. https://doi.org/10.1016/S0037-0738(98)00118-3
  21. Morton, A.C. and Hallsworth, C.R. (2007) Stability of detrital heavy minerals during burial diagenesis. In: Mange, M., Wright, D.K. (Eds.), Heavy Minerals in Use: Developments in Sedimentology, 58, 215-245.
  22. Neto, J.A.B. and Brehme, I. (2006) Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environmental Geology, 49, 1051-1063. https://doi.org/10.1007/s00254-005-0149-1
  23. Nie, J.S., Peng, W.B., Pfaff, K., Moller, A., Garzanti, E., Ando, S., Stevense, T., Birde, A., Chang, H., Song, Y.G., Liu, S.P., and Ji, S.C. (2013) Controlling factors on heavy mineral assemblages in Chinese loess and red Clay. Palaeogeography, Palaeoclimatology, Palaeoecology, 381-382, 110-118. https://doi.org/10.1016/j.palaeo.2013.04.020
  24. Schuttenhelm, R.T.E. and Laban, C. (2005) Heavy minerals, provenance and large scale dynamics of seabed sands in the Southern North Sea: Baak's (1936) heavy mineral study revisited. Quaternary International, 133-134, 179-193.
  25. Stattegger, K. (1986) Multivariate statistische Auswertung von Schwermineraldaten der alpinen Gosau und Bezuge zur plattentektonischen Entwicklung der Ostalpen wahrend der Oberkreide. Geologische Rundschau, 75, 341-352. https://doi.org/10.1007/BF01820616
  26. Stattegger, K. (1987) Heavy minerals and provenance of sands: modeling of lithological end members from river sands of northern Austria and from sandstones of Austroalpine Gosau Formation (Late Cretaceous). Journal of Sedimentary Petrology, 57, 301-310.
  27. Tsikouras, B., Pe-Piper, G., Piper, D.J.W., and Schaffer, M. (2011) Varietal heavy mineral analysis of sediment provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sedimentary Geology, 237, 150-165. https://doi.org/10.1016/j.sedgeo.2011.02.011
  28. Vital, H., Stattegger, K., and Garbe-Schonberg, C.-D. (1999) Composition and trace-element geochemistry of detrital clay and heavy-mineral suites of the lowermost Amazon river: a provenance study. Journal of Sedimentary Research, 69, 563-575. https://doi.org/10.2110/jsr.69.563
  29. Yang, S.Y., Wang, Z.B., Guo, Y., Li, C.X., and Cai, J.G. (2009) Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication. Journal of Asian Earth Sciences, 35, 56-65. https://doi.org/10.1016/j.jseaes.2008.12.002

피인용 문헌

  1. 황해남동니질대와 제주남서니질대 표층퇴적물의 중광물 특성 비교 연구 vol.30, pp.3, 2017, https://doi.org/10.9727/jmsk.2017.30.3.93