DOI QR코드

DOI QR Code

Effect of Diet Containing Whole Wheat Bread with Capsosiphon fulvescens and Lindera obtusiloba Ethanol Extracts on Plasma Glucose and Lipid Levels in Rats

매생이와 생강나무잎 에탄올 추출물이 첨가된 통밀빵을 섭취한 랫트의 혈당과 지질수준에 미치는 영향

  • Han, Ah-Ram (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Se-Wook (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Chun, Su-Hyun (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Nam, Mi-Hyun (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Hong, Chung-Oui (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Bok Hee (CJ Foodville Bakery R&D) ;
  • Kim, Tae Cheol (CJ Foodville Bakery R&D) ;
  • Lee, Kwang-Won (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • Received : 2016.02.15
  • Accepted : 2016.04.08
  • Published : 2016.04.30

Abstract

The present study was conducted to investigate the effect of whole wheat bread with added Lindera obtusiloba (LO) and Capsosiphon fulvescens (CF) ethanol extracts on serum glucose and lipid levels in Sprague Dawley rats. Rats were divided into five groups depending on the diet administered: normal bread (NC), whole wheat bread (W), whole wheat bread with LO leaves extract (WL), whole wheat bread with CF extract (WC), and whole wheat bread with freeze-drying CF (WDC). After 4 weeks of consuming the experimental diet, the blood glucose level and hemoglobin A1c contents were found to be significantly lower in the W, WL, WC, and WDC groups than in the NC group. The high-density lipoprotein-cholesterol levels increased in the WL group when compared to those in the NC group and triglycerides levels decreased in all wheat groups compared to those in the NC group. These results suggest that wheat breads containing LO and CF extracts are effective for preventing hypercholesterolemia and obesity.

Acknowledgement

Grant : BK21플러스

Supported by : 고려대학교

References

  1. Kd A. Report of task force team for basic statistical study of Korean diabetes mellitus. In: Diabetes in Korea 2007. Korean Diabetes Association, Seoul, Korea (2008)
  2. Grover J, Yadav S, Vats V. Medicinal plants of India with antidiabetic potential. J. Ethnopharmacol. 81: 81-100 (2002) https://doi.org/10.1016/S0378-8741(02)00059-4
  3. Cho SY, Han YB, Shin KH. Screening for antioxidant activity of edible plants. J. Korean Soc. Food Sci. Nutr. 30: 133-137 (2002)
  4. Slavin JL, Martini MC, Jacobs jr DR, Marquart L. Plausible mechanisms for the protectiveness of whole grains. Am. J. Clin. Nutr. 70: 459s-463s (1999) https://doi.org/10.1093/ajcn/70.3.459s
  5. Slavin J, Jacobs D, Marquart L. Wholegrain consumption and chronic disease: Protective mechanisms. Nutr. Cancer 27: 14-21 (1997) https://doi.org/10.1080/01635589709514495
  6. Jacobs D, Meyer KA, Kushi LH, Folsom AR. Whole-grain intake may reduce the risk of ischemic heart disease death in postmenopausal women: The Iowa women's health study. Am. J. Clin. Nutr. 68: 248-257 (1998) https://doi.org/10.1093/ajcn/68.2.248
  7. Mckeown NM, Meigs JB, Liu S, Wilson PW, Jacques PF. Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am. J. Clin. Nutr. 76: 390-398 (2002) https://doi.org/10.1093/ajcn/76.2.390
  8. Kwon DJ, Kim JK, Bae YS. Essential oils from leaves and twigs of Lindera obtusiloba. J. Korean For. Soc. 96: 65-69 (2007)
  9. Kim SH, Son JH, Lee SH. Inhibitory effects of water extract of Lindera obtusiloba on the mast cell-mediated allergic inflammation. Korean J. Pharmacogn. 40: 233-237 (2009)
  10. Bang CY, Won EK, Park KW, Lee GW, Choung SY. Antioxidant activites and whitening effect from Lindera obtusiloba BL. extract. Yakhak Hoeji 52: 355-360 (2008)
  11. Park KJ, Park SH, Kim JK. Anti-wrinkle activity of Lindera obtusiloba extract. J. Soc. Cosmet. Sci. Korea 35: 317-323 (2009)
  12. Hwang EK, Amano H, Park CS. Assessment of the nutritional value of Capsosiphon fulvescens (Chlorophyta): Developing a new species of marine macroalgae for cultivation in Korea. J. Appl. Phycol. 20: 147-151 (2008) https://doi.org/10.1007/s10811-007-9198-z
  13. Kang YS, You DW, Park KB, Kang NJ, Kim JS, Kim HY, Cho YH, Lee KN, Byun JH, Ha JH. A comprehensive bibliography on the fishery special commodity in Korea. Suhyepmunhwasa, Seoul, Korea. pp. 418-421 (2000)
  14. Hong CO, Seomun Y, Koo YC, Nam MH, Lee HA, Kim JH, Wang Z, Yang SY, Lee SH, No SH, Lee KW. Single and 14-day repeated oral toxicity studies of 70% ethanol extract of Lindera obtusiloba blume leaves. J. Korean Soc. Food Sci. Nutr. 38: 1324-1330 (2009) https://doi.org/10.3746/jkfn.2009.38.10.1324
  15. Nam MH, Koo YC, Hong CO, Yang SY, Kim SW, Jung HL, Lee H, Kim JY, Han AR, Son WR, Pyo MC, Lee KW. In vivo study of the renal protective effects of Capsosiphon fulvescens against streptozotocin-induced oxidative stress. Korean J. Food Sci. Technol. 46: 641-647 (2014) https://doi.org/10.9721/KJFST.2014.46.5.641
  16. Lauer RM, Lee J, Clarke WR. Factors affecting the relationship between childhood and adult cholesterol levels: The Muscatine Study. Pediatrics 82: 309-318 (1988)
  17. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. biochem. 95: 351-358 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  18. Steer KA, Sochor M, McLean P. Renal hypertrophy in experimental diabetes: Changes in pentose phosphate pathway activity. Diabetes 34: 485-490 (1985) https://doi.org/10.2337/diab.34.5.485
  19. Nannipieri M, Gonzales C, Baldi S, Posadas R, Williams K, Haffner SM, Stern MP, Ferrannini E. Liver enzymes, the metabolic syndrome, and incident diabetes: The Mexico city diabetes study. Diabetes care 28: 1757-1762 (2005) https://doi.org/10.2337/diacare.28.7.1757
  20. Trowell H, Southgate DT, Wolever TS, Leeds A, Gassull M, Jenkins DA. Dietary fibre redefined. The Lancet. 307: 967 (1976)
  21. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: A sensitive quantitative biomarker for early detection of kidney tubular injury. Am. J. Physiol.-Renal 290: F517-F529 (2006) https://doi.org/10.1152/ajprenal.00291.2005
  22. Bessman SP, Carpenter CL. The creatine-creatine phosphate energy shuttle. Annu. Rev. Biochem. 54: 831-862 (1985) https://doi.org/10.1146/annurev.bi.54.070185.004151
  23. Allen PJ. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci. Biobehav. Rev. 36: 1442-1462 (2012) https://doi.org/10.1016/j.neubiorev.2012.03.005
  24. Coresh J, Wei GL, Mcquillan G, Brancati FL, Levey AS, Jones C, Klag MJ. Prevalence of high blood pressure and elevated serum creatinine level in the United States: Findings from the third National Health and Nutrition Examination Survey (1988-1994). Arch. Intern. Med. 161: 1207-1216 (2001) https://doi.org/10.1001/archinte.161.9.1207
  25. Rao SS, Disraeli P, McGregor T. Impaired glucose tolerance and impaired fasting glucose. Am. Fam. Physician. 69: 1961 (2004)
  26. Kim JH, Oh MG, Han MA, Lee MS, Kim YI, Go IW, Lee JY, Heo GS. Evaluation of HbA1c as a screening for type 2 diabetes mellitus in Korea. Korean Public Health Res. 38: 41-47 (2012)
  27. Le Floch JP, Escuyer P, Baudin E, Baudon D, Perlemuter L. Blood glucose area under the curve: Methodological aspects. Diabetes care 13: 172-175 (1990) https://doi.org/10.2337/diacare.13.2.172
  28. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 34: 362-366 (1981) https://doi.org/10.1093/ajcn/34.3.362
  29. Matsuyama-Yokono A, Tahara A, Nakano R, Someya Y, Hayakawa M, Shibasaki M. Chronic inhibition of dipeptidyl peptidase- IV with ASP8497 improved the HbA1c level, glucose intolerance, and lipid parameter level in streptozotocin-nicotinamide-induced diabetic mice. Naunyn-Schmiedebergs Arch. Pharmacol. 379: 191-199 (2009) https://doi.org/10.1007/s00210-008-0348-x
  30. Inzucchi S, Bergenstal R, Fonseca V, Gregg ED, Mayer-Davis B, Spollett G, Wender R. Diagnosis and classification of diabetes mellitus. Am Diabetes Assoc. 33: S62-S69 (2010)
  31. Watanabe M, Kokubo Y, Higashiyama A, Ono Y, Okayama A, Okamura T. New diagnosis criteria for diabetes with hemoglobin A1c and risks of macro-vascular complications in an urban Japanese cohort: The suita study. Diabetes Res. Clin. Pract. 88: e20-e23 (2010) https://doi.org/10.1016/j.diabres.2010.01.019
  32. Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, Coresh J, Brancati FL. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Engl. J. Med. 362: 800-811 (2010) https://doi.org/10.1056/NEJMoa0908359
  33. Sonksen P, Sonksen J. Insulin: Understanding its action in health and disease. Br. J. Anaesth. 85: 69-79 (2000) https://doi.org/10.1093/bja/85.1.69
  34. Remsberg KE, Talbott EO, Zborowski JV, Evans RW, Mchugh-Pemu K. Evidence for competing effects of body mass, hyperinsulinemia, insulin resistance, and androgens on leptin levels among lean, overweight, and obese women with polycystic ovary syndrome. Fertil. Steril. 78: 479-486 (2002) https://doi.org/10.1016/S0015-0282(02)03303-4
  35. Nordestgaard BG, Chapman MJ, Ray K, Born J, Andreotti F, Watts GF, Ginsberg H, Amarenco P, Catapano A, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Reiner Z, Taskinen MR, Tokgözoglu LT, Tybjærg-Hansen A. Lipoprotein (a) as a cardiovascular risk factor: Current status. Eur. Heart J. 1-12 (2010)
  36. Mohun AF, Cook IJY. Simple methods for measuring serum levels of the glutamic-oxalacetic and glutamic-pyruvic transaminases in routine laboratories. J. Clin. Pathol. 10: 394-399 (1957) https://doi.org/10.1136/jcp.10.4.394
  37. Wronski TJ, Cintron M, Dann LM. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif. Tissue Int. 43: 179-183 (1988) https://doi.org/10.1007/BF02571317
  38. Thurman RG, Bradford BU, Iimuro Y, Knecht KT, Connor HD, Adachi Y, Wall C, Arteel GE, Raleigh JA, Forman DT, Mason RP. Role of Kupffer cells, endotoxin and free radicals in hepatotoxicity due to prolonged alcohol consumption: Studies in female and male rats. J. Nutr. 127: 903S-906S (1997) https://doi.org/10.1093/jn/127.5.903S
  39. Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res. 37: 907-925 (1996)
  40. Murakami K, Tobe K, Ide T, Mochizuki T, Ohashi M, Akanuma Y, Yazaki Y, Kadowaki T. A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and PPAR-gamma: Effect of PPAR-alpha activation on abnormal lipid metabolism in liver of Zucker fatty rats. Diabetes 47: 1841-1847 (1998) https://doi.org/10.2337/diabetes.47.12.1841
  41. Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of $PPAR{\alpha}$ in energy metabolism and vascular homeostasis. J. Clin. Invest. 116: 571-580 (2006) https://doi.org/10.1172/JCI27989
  42. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart J-C, Briggs M, Spiegelman BM, Auwerx J. Regulation of peroxisome proliferator-activated receptor ${\gamma}$ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: Implications for adipocyte differentiation and metabolism. Mol. Cell. Biol. 19: 5495-5503 (1999) https://doi.org/10.1128/MCB.19.8.5495