DOI QR코드

DOI QR Code

Chitosan Nanoparticle System for Improving Blood Circulation

혈행개선을 위한 키토산 나노입자화

  • Received : 2016.02.05
  • Accepted : 2016.03.28
  • Published : 2016.04.30

Abstract

The principal objective of this study was to produce a chitosan nanoparticle (NP) system for improving blood circulation. Chitosan NPs were prepared using fucoidan and $poly-{\gamma}-glutamic$ acid (PGA), denoted as CS/Fu and CS/Fu/PGA NPs, respectively. As the chitosan concentration was increased, the activated partial thromboplastin time (APTT) of the NPs significantly increased (p<0.05). When the concentration of fucoidan and ${\gamma}-PGA$ was 5-20 and $1-10{\mu}g/mL$, respectively, the size of the CS/Fu and CS/Fu/PGA NPs was approximately 200 and 100 nm, respectively. With an increase in the fucoidan and PGA concentration, the APTT of CS/Fu and CS/Fu/PGA NPs significantly increased (p<0.05). These results suggest that CS/Fu and CS/Fu/PGA NPs could be used as a potent NP system for improving blood circulation.

혈행개선을 위한 나노전달시스템을 제조하기 위하여, 천연 양전하성 다당류인 키토산과 혈행개선 소재로 알려져 있는 푸코이단과 PGA을 이용하여 CS/Fu 및 CS/Fu/PGA 두 종류의 나노캡슐을 제조하였다. 기본 피복물질인 키토산의 농도가 증가됨에 따라 나노캡슐의 APTT의 증가로 내인성 혈액응고 활성은 증진되었으나 혈소판 응집능 또한 증가되는 경향을 나타냈다. 따라서 키토산 농도는 대조군과 혈소판 응집능이 유의적으로 차이가 나지 않으며 나노입자 제조가 가능한 최소 농도인 2 mg/mL로 고정하였다. 그 결과 CS/Fu 나노입자의 경우 푸코이단의 농도가 $5-20{\mu}g/mL$일 때 약 200 nm 크기의 입자가 균일하게 생성되었고, CS/Fu/PGA 나노입자의 경우 PGA의 농도 $1-10{\mu}g/mL$에서 약 100nm 크기의 입자가 균일하게 생성되었다. 푸코이단과 PGA 농도 증가에 따라서 나노캡슐의 내인성 혈액응고 활성은 증가되었으나, 혈소판 응집능에는 유의적 차이를 나타내지 않았다. 즉, CS/Fu과 CS/Fu/PGA 나노입자는 각각 약 200 nm와 100 nm의 작고 균일한 입자분포를 가지고 있으며, 내인성 혈액응고 활성을 나타내고 혈소판 응집능에 영향을 미치지 않기 때문에 향후 다양한 특성의 혈행개선 활성성분을 포집할 수 있는 나노전달체로써 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Kim YD, Bae ON, Chung SM, Chung JH. Improvement of haemostasis mediated by anti-platelet activities by plant vinegar. J. Toxicol. Pubulic Health 20: 137-142 (2004)
  2. Chung HK, Shin MJ, Cha YJ, Lee KH. Effect of onion peel extracts on blood lipid profile and blood coagulation in high fat fed SD rats. Korean J. Food Nutr. 24: 442-450 (2011) https://doi.org/10.9799/ksfan.2011.24.3.442
  3. Noh KH, Park CM, Jang JH, Shin JH, Cho MK, Kim JO, Song YS. Effects of nattokinase fibrinol supplementation on fibrinolysis and atherogenesis. J. Life Sci. 19: 289-298 (2009) https://doi.org/10.5352/JLS.2009.19.2.289
  4. Akahane N, Ohba S, Suzuki J, Wakabayashi T, Nakahara T, Yanagi K, Ohsiima N. Antithrombotic activity of a symmetrical triglyceride with eicosapentaenoic acid and ${\gamma}$-linolenic acid in guinea pig mesenteric microvasculature. Thromb. Res. 78: 441-450 (1995) https://doi.org/10.1016/0049-3848(95)99610-K
  5. Akiba S, Kawauchi T, Oka T, Hashizume T, Sato T. Inhibitory effect of the leaf extract of Ginkgo biloba L. on oxidative stressinduced platelet aggregation. Biochem. Mol. Biol. Life Sci. 46: 1243-1248 (1998)
  6. Choi IS, Jin BH. Effects of sardine oil on plasma lipids, fatty acid composition of erythrocyte membrane phospholipids and lipid peroxide levels of plasma and liver in rats. Korean J. Nutr. 20: 330-340 (1987)
  7. Lee HA, Yoo IJ, Lee BH. Research and development trends on omega-3 fatty acid fortified foodstuffs. J. Korean Soc. Food Nutr. 26: 161-174 (1997)
  8. Yu JY, Jin YR, Lee JJ, Chung JH, Noh JY, You SH, Kim KN, Im JH, Lee JH, Seo JM, Han HJ, Lim Y, Park ES, Kim TJ, Shin KS, Wee JJ, Park JD, Yun YP. Antiplatelet and antithrombotic activities of Korean red ginseng. Arch. Pharm. Res. 29: 898-903 (2006) https://doi.org/10.1007/BF02973912
  9. Tan CP, Nakajima M. ${\beta}$-Carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chem. 92: 661-671 (2005) https://doi.org/10.1016/j.foodchem.2004.08.044
  10. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50: 47-60 (2000) https://doi.org/10.1016/S0939-6411(00)00076-X
  11. Cho, YH, Shin, DS, Park J. A study on wall materials for flavor encapsulation. Korean J. Food Sci. Tech. 31: 1563-1569 (1999)
  12. Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S. Encapsulation of food ingredients using nanoliposome technology. Int. J. Food Prop. 11: 833-844 (2008) https://doi.org/10.1080/10942910701648115
  13. Fathi M, Mozafari MR, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Tech. 23: 13-27 (2012) https://doi.org/10.1016/j.tifs.2011.08.003
  14. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 1: 1806-1815 (2011) https://doi.org/10.1016/j.profoo.2011.09.265
  15. Mauludin R, Müller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur. J. Pharm. Sci. 36: 502-510 (2009) https://doi.org/10.1016/j.ejps.2008.12.002
  16. Rashidi L, Khosravi-Darani K. The applications of nanotechnology in food industry. Crit. Rev. Food Sci. 51: 723-730 (2011) https://doi.org/10.1080/10408391003785417
  17. Gibbs BF, Kermasha S, Alli I, Mulligan CN. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 50: 213-224 (1999) https://doi.org/10.1080/096374899101256
  18. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Delivery Rev. 60: 1650-1662 (2008) https://doi.org/10.1016/j.addr.2008.09.001
  19. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 274: 1-33 (2004) https://doi.org/10.1016/j.ijpharm.2003.12.026
  20. Yoksan R, Jirawutthiwongchai J, Arpo K. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloid. Surface. B. 76: 292-297 (2010) https://doi.org/10.1016/j.colsurfb.2009.11.007
  21. Kim DG, Jeong YI, Choi C, Roh SH, Kang SK, Jang MK, Nah JW. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Pharm. 319: 130-138 (2006) https://doi.org/10.1016/j.ijpharm.2006.03.040
  22. Sajomsang W, Gonil P, Ruktanonchai UR, Petchsangsai M, Opanasopit P, Puttipipatkhachorn S. Effects of molecular weight and pyridinium moiety on water-soluble chitosan derivatives for mediated gene delivery. Carbohyd. Polym. 91: 508-517 (2013) https://doi.org/10.1016/j.carbpol.2012.08.053
  23. Chou TC, Fu E, Wu CJ, Yeh JH. Chitosan enhances platelet adhesion and aggregation. Biochem. Bioph. Res. Co. 302: 480-483 (2003) https://doi.org/10.1016/S0006-291X(03)00173-6
  24. Periayah MH, Halim AS, Hussein AR, Saad AZM, Rashid AHA, Noorsal K. In vitro capacity of different grades of chitosan derivatives to induce platelet adhesion and aggregation. Int. J. Biol. Macromol. 52: 244-249 (2013) https://doi.org/10.1016/j.ijbiomac.2012.10.001
  25. Stoltz JF, Nicolas A. Analytical study of ionized or ionizable groups of platelet membrane. Blut. 38: 103-117 (1979) https://doi.org/10.1007/BF01007951
  26. Hajdu I, Bodnár M, Filipcsei G, Hartmann JF, Daróczi L, Zrínyi M, Borbély J. Nanoparticles prepared by self-assembly of chitosan and poly-${\gamma}$-glutamic acid. Colloid Polym. Sci. 286: 343-350 (2008) https://doi.org/10.1007/s00396-007-1785-7
  27. Sonaje K, Chen YJ, Chen HL, Wey SP, Juang JH, Nguyen HN, Hsu CW, Lin KJ, Sung HW. Enteric-coated capsules filled with freeze-dried chitosan/poly (${\gamma}$-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials 31: 3384-3394 (2010) https://doi.org/10.1016/j.biomaterials.2010.01.042
  28. Tang DW, Yu SH, Ho YC, Mi FL, Kuo PL, Sung HW. Heparinized chitosan/poly (${\gamma}$-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 31: 9320-9332 (2010) https://doi.org/10.1016/j.biomaterials.2010.08.058
  29. Bilan MI, Grachev AA, Ustuzhanina NE, Shashkov AS, Nifantiev NE, Usov AI. Structure of a fucoidan from the brown seaweed Fucus evanescens C. Ag. Carbohyd. Res. 337: 719-730 (2002) https://doi.org/10.1016/S0008-6215(02)00053-8
  30. Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules 13: 1671-1695 (2008) https://doi.org/10.3390/molecules13081671
  31. Cumashi A, Ushakova NA, Preobrazhenskaya ME, D'Incecco A, Piccoli A, Totani L, Tinari N, Morozevich GE, Berman AE, Bilan MI, Usov AI, Ustyuzhanina NE, Grachev AA, Sanderson CJ, Kelly M, Rabinovich GA, Iacobelli S, Nifantiev NE. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17: 541-552 (2007) https://doi.org/10.1093/glycob/cwm014
  32. Nishino T, Yokoyama G, Dobashi K, Fujihara M, Nagumo T. Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities. Carbohyd. Res. 186: 119-129 (1989) https://doi.org/10.1016/0008-6215(89)84010-8
  33. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release 73: 255-267 (2001) https://doi.org/10.1016/S0168-3659(01)00294-2
  34. Son DJ, Cho MR, Jin YR, Kim SY, Park YH, Lee SH, Akiba S, Sato T, Yun YP. Antiplatelet effect of green tea catechins: A possible mechanism through arachidonic acid pathway. Prostag. Leukotr. Ess. 71: 25-31 (2004) https://doi.org/10.1016/j.plefa.2003.12.004
  35. Li C, Mao X, Xu B. Pulsed electric field extraction enhanced anti-coagulant effect of fungal polysaccharide from Jew's Ear (Auricularia auricula). Phytochem. Analysis 24: 36-40 (2013) https://doi.org/10.1002/pca.2376
  36. Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science 145: 1310-1312 (1964) https://doi.org/10.1126/science.145.3638.1310