DOI QR코드

DOI QR Code

Studies on the Antioxidative Activities and Active Components of the Extracts from Pleurotus ostreatus

느타리버섯 추출물의 항산화 활성과 그 성분에 대한 연구

  • Kim, Min-Hee (Department of Food Science & Technology, Chonbuk National University) ;
  • Jeong, Eun-Jeong (Department of Food Science & Technology, Chonbuk National University) ;
  • Kim, Yong-Suk (Department of Food Science & Technology, Chonbuk National University)
  • Received : 2016.03.16
  • Accepted : 2016.03.21
  • Published : 2016.04.30

Abstract

Antioxidative components and activities of the extracts from Pleurotus ostreatus extracted at different ethanol concentration were analyzed and their correlation were investigated. Ergothioneine, total phenolic compounds, and flavonoid contents of the extracts from P. ostreatus extracted with hot water (0% ethanol) were the highest ($2.98{\pm}0.05$, $9.51{\pm}0.45$, and $2.83{\pm}0.03mg/g$, respectively) and the contents were decreased according to increase of ethanol concentration for extraction. DPPH and ABTS radical scavenging activities of the extracts from P. ostreatus extracted with hot water were the highest ($80.41{\pm}0.56$ and $91.47{\pm}0.11%$, respectively). FRAP value also showed the highest reducing power by $8.86{\pm}0.33\;FeSO_4\;eq$. mM in hot water extracts. Positive correlations were found between ergothioneine contents and antioxidative active components and antioxidant activity of the extracts from P. ostreatus. Results indicate that hot water extraction was most efficient for the extracts with high antioxidative activities from P. ostreatus.

느타리버섯을 기능성 식품 소재로 활용하기 위해 에탄올 추출 농도에 따라 느타리버섯의 기능성 성분인 ergothioneine, total phenolic compounds 및 flavonoid 함량 측정과 항산화 활성을 시험하였다. 물 추출물(에탄올 0%)의 ergothioneine과 total phenolic compounds 및 flavonoid 함량이 각각 $2.98{\pm}0.05mg/g$, $9.51{\pm}0.45mg/g$, $2.83{\pm}0.03mg/g$으로 가장 높았고, 에탄올 농도가 높아짐에 따라 그 함량은 감소하는 경향을 보였다. 항산화 활성을 측정한 결과 DPPH 및 ABTS 라디칼 소거능은 물 추출물에서 각각 $80.41{\pm}0.56%$, $91.47{\pm}0.11%$로 가장 높은 활성을 나타냈고, FRAP 값도 물 추출물이 $8.86{\pm}0.33\;FeSO_4\;eq$. mM로 가장 높은 환원력을 나타냈다. 느타리버섯 추출물의 ergothioneine은 total phenolic compounds (r = 0.818)와 flavonoid (r = 0.837)와 높은 상관관계를 나타냈으며, DPPH (r = 0.614) 및 ABTS라디칼 소거능(r = 0.483)과 비교적 높은 상관관계를 나타내어 항산화성분 및 항산화활성과 관계가 있음을 확인하였다. 따라서 느타리버섯의 기능성 성분과 항산화 활성은 물로 추출하는 것이 가장 적합한 것으로 나타났다.

Keywords

References

  1. Chung K.M., An H.J.: Effects of oyster mushroom on quality of Sulgidduk and Gyeongdan. J. Korean Soc. Food Sci. Nutr. 41, 1294-1300 (2012). https://doi.org/10.3746/jkfn.2012.41.9.1294
  2. Ryu H.S.: Enhancing effect of Pleurotus ostreatus extracts on mouse spleen and cytokine cells activation. J. Korean Soc. Food Sci. Nutr. 27, 603-608 (2014). https://doi.org/10.9799/ksfan.2014.27.4.603
  3. Um S.N., Jin G.E., Park K.W., Yu1 Y.B., Park K.M.: Physiological activity and nutritional composition of Pleurotus species. Korean J. Food Sci. Technol. 42, 90-96 (2010).
  4. Park M.H., Kil K.J., Lee B.W.: Anti-cancer activity of Lentinus edoeds and Pleurotus ostreatus. Korean J. Food Sci. Technol. 30, 702-708 (1998).
  5. Jayakumar T., Thomas A., Sheu J.R., Geraldine P.: In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food Res. Intr. 44, 851-861 (2011). https://doi.org/10.1016/j.foodres.2011.03.015
  6. Hong M.H., Jin Y.J., Pyo Y.H.: Antioxidant properties and ubiquinone contents in different parts of several commercial mushrooms. J. Korean Soc. Food Sci. Nutr. 41, 1235-1241 (2012). https://doi.org/10.3746/jkfn.2012.41.9.1235
  7. Ito T., Kato M., Tsuchida H., Harada E.: Ergothioneine as an anti-oxidative/anti-inflammatory component in several edible mushrooms. Food Sci. Technol. Res. 17, 103-110 (2011). https://doi.org/10.3136/fstr.17.103
  8. Grundemann D., Harlfinger S., Golz S., Geerts A., Lazar A., Berkels R., Jung N., Rubbert A., Schomig E.: Discovery of the ergothioneine transporter. Proc. Natl. Acad. Sci. USA, 102, 5256-5261 (2005). https://doi.org/10.1073/pnas.0408624102
  9. Hand C.E., Taylor N.J., Honek J.F.: Ab initio studies of the properties of intracellular thiols ergothioneine and ovothiol. Bioorg. Med. Chem. Lett. 15, 1357-1360 (2005). https://doi.org/10.1016/j.bmcl.2005.01.014
  10. Grigat S., Harlfinger S., Pal S., Striebinger R., Golz S., Geerts A., Lazar A., Schömig E., Grundemann D.: Probing the substrate specificity of the ergothioneine transporter with methimazole, hercynine, and organic cations. Biochem. Pharmacol. 74, 309-316 (2007). https://doi.org/10.1016/j.bcp.2007.04.015
  11. Misiti F., Castagnola M., Zuppi C., Giardina B., Messana I.: Role of ergothioneine on S-nitrosoglutathione catabolism. Biochem. J. 356, 799-804 (2001). https://doi.org/10.1042/bj3560799
  12. Hartman P.E.: Ergothioneine as antioxidant. Methods in Enzymol. 186, 310-318 (1990). https://doi.org/10.1016/0076-6879(90)86124-E
  13. Kim M.H., Kim S.Y., Ko J.M., Jeong D.Y., Kim Y.S.: Biological activities of cheonggukjang prepared with several soybean cultivars. Food Sci. Biotechnol. 21, 475-483 (2012). https://doi.org/10.1007/s10068-012-0060-y
  14. Lee J.N., Kim H.E., Kim Y.S.: Anti-diabetic and anti-oxidative effects of Opuntia humifusa cladodes. J. Korean Soc. Food Sci. Nutr. 43, 661-667 (2014). https://doi.org/10.3746/jkfn.2014.43.5.661
  15. Kim H.E., Kim Y.S.: Biological activities of fermented soybean paste (Doenjang) prepared using germinated soybeans and germinated black soybeans during fermentation. Food Sci. Biotechnol. 23, 1533-1540 (2014). https://doi.org/10.1007/s10068-014-0209-y
  16. Arts M.J., Haenen G.R., Voss H.P., Bast A.: Antioxidant capacity of reaction products limits the applicability of the trolox equivalent antioxidant capacity (TEAC) assay. Food Chem. Toxicol. 42, 45-49 (2004). https://doi.org/10.1016/j.fct.2003.08.004
  17. Benzie I.F., Strain J.J.: The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 239, 70-76 (1996). https://doi.org/10.1006/abio.1996.0292
  18. SAS Institute, Inc. SAS User's Guide. ver. 6. Statistical Analysis Systems Institute, Cary, NC, USA (1990).
  19. Chen S.Y., Ho K.J., Hsieh Y.J., Wang L.T., Mau J.L.: Contents of lovastatin, ${\gamma}$-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. Food Sci. Technol. 47, 274-278 (2012). https://doi.org/10.1111/j.1365-2621.2011.02836.x
  20. Durkee A.B., Thivierge P.A.: Ferulic acid and other phenolics in oat seeds. J. Food Sci. 42, 551-558 (1977). https://doi.org/10.1111/j.1365-2621.1977.tb01547.x
  21. Kozlowska H., Rotkiewicz D.A., Zadernowski R., Sosulski F.W.: Phenolic acids in rapeseed and mustard. J. Am. Oil Chem. Soc. 60, 1119-1131 (1983). https://doi.org/10.1007/BF02671339
  22. Govindan S., Sabapathy V., Rajan B.I.S., Ponnusamy L.: Antioxidant activity of various extracts from an edible mushroom Pleurotus eous. Food Sci. Biotechnol. 21, 661-668 (2012). https://doi.org/10.1007/s10068-012-0086-1
  23. Kim D.H., Park J.Y., Kim J.H., Han C.K.: Flavonoids as mushroom tyrosinase inhibitors: a fluorescence quenching study. J. Agric. Food Chem. 54, 935-941 (2006). https://doi.org/10.1021/jf0521855
  24. Palacios I., Lozano M., Moro C., D'Arrigo M., Rostagno M.A., Martinez J.A., Garcia A., Guillamon E., Villars A.: Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 128, 674-678 (2011). https://doi.org/10.1016/j.foodchem.2011.03.085
  25. Woldegiorgis A.Z., Abate D., Haki G.D., Ziegler G.R.: Antioxidant property of edible mushrooms collected from Ethiopia. Food Chem. 157, 30-36 (2014). https://doi.org/10.1016/j.foodchem.2014.02.014
  26. Wong F.C., Chai T.T., Tan S.L., Yong A.L.: Evaluation of bioactivities and phenolic content of selected edible mushrooms in Malaysia. Tropical J. Pharmaceutical, 12, 1011-1016 (2013).
  27. Blois M.S.: Antioxidant determinations by the use of astable free radical. Nature, 181, 1199-1200 (1956).
  28. Cheung L.M., Cheung C.K., Ooi E.C.: Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 81, 249-255 (2003). https://doi.org/10.1016/S0308-8146(02)00419-3
  29. Yoo K.M., Kim D.O., Lee C.Y.: Evaluation of different methods of antioxidant measurement. Food Sci. Biotechnol. 16, 177-182 (2007).
  30. Andrzej L., Olszowy D.M.: The importance of solvent type in estimating antioxidant properties of phenolic compounds by ABTS assay. Eur. Food Res. Technol. 236, 1099-1105 (2013). https://doi.org/10.1007/s00217-013-1982-1
  31. Kim Y.C., Cho C.W., Rhee Y.K., Yoo K.M., Rho J.H.: Antioxidant activity of ginseng extracts prepared by enzyme and heat treatment. J. Korean Soc. Food Sci. Nutr. 36, 1482-1485 (2007). https://doi.org/10.3746/jkfn.2007.36.11.1482
  32. Kim J.H., Jeong C.H., Choi J.G., Kwak J.K., Choi S.G., Heo H.J.: Antioxidant and neuronal cell protective effects of methanol extract from Schizandra chinensis using an in vitro system. Korean J. Food Sci. Technol. 41, 712-716 (2009).
  33. Pornariya C., Kanok O.I.: Amino acids and antioxidant properties of the oyster mushrooms, Pleurotus ostreatus and Pleurotus sajor-caju. J. Sci. Soc. Thailand, 35, 326-331 (2009). https://doi.org/10.2306/scienceasia1513-1874.2009.35.326
  34. Lee S.O., Kim M.J., Kim D.G., Choi H.J.: Antioxidative activities of temperature-stepwise water extracts from Inontus obliquus. J. Korean Soc. Food Sci. Nutr. 34, 139-147 (2005). https://doi.org/10.3746/jkfn.2005.34.2.139

Cited by

  1. Study on Sawdust Bag Cultivation of Shiitake (Lentinula edodes), using Oak Wilt-Diseased Logs pp.23835249, 2016, https://doi.org/10.4489/KJM.2016.44.4.300
  2. Quality Changes of Low Temperature Storage and Storage Period of New Cultivar Dewdrop Pine Mushroom (Lentinula edodes GNA01) and Button Mushroom (Agaricus bisporus Sing.) vol.33, pp.2, 2017, https://doi.org/10.9724/kfcs.2017.33.2.174
  3. The Functional Effects on Anti-oxidant and Anti-inflammation of Veronica persica Poir. Extracts vol.26, pp.4, 2018, https://doi.org/10.11625/KJOA.2018.26.4.661