DOI QR코드

DOI QR Code

AUTOMORPHISMS OF THE ZERO-DIVISOR GRAPH OVER 2 × 2 MATRICES

  • Ma, Xiaobin (Department of Mathematics China University of Mining and Technology) ;
  • Wang, Dengyin (China University of Mining and Technology) ;
  • Zhou, Jinming (Department of Mathematics China University of Mining and Technology, Department of Mathematics Hefei Normal University)
  • 투고 : 2014.10.20
  • 발행 : 2016.05.01

초록

The zero-divisor graph of a noncommutative ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are nonzero zero-divisors of R, and there is a directed edge from a vertex x to a distinct vertex y if and only if xy = 0. Let $R=M_2(F_q)$ be the $2{\times}2$ matrix ring over a finite field $F_q$. In this article, we investigate the automorphism group of ${\Gamma}(R)$.

키워드

참고문헌

  1. S. Akbari and A. Mohammadian, Zero-divisor graphs of non-commutative rings, J. Algebra 296 (2006), no. 2, 462-479. https://doi.org/10.1016/j.jalgebra.2005.07.007
  2. D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring. II, Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), 61-72, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
  3. D. F. Anderson and J. D. LaGrange, Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph, J. Pure Appl. Algebra 216 (2012), no. 7, 1626-1636. https://doi.org/10.1016/j.jpaa.2011.12.002
  4. D. F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), no. 3, 221-241. https://doi.org/10.1016/S0022-4049(02)00250-5
  5. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
  6. M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (2005), no. 6, 2043-2050. https://doi.org/10.1081/AGB-200063357
  7. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
  8. J. Coykendall, S. Sather-Wagstaff, L. Sheppardson, and S. Spiroff, On zero divisor graphs, in C. Francisco, et al. (Eds.), Progress in Commutative Algebra II: Closures, Finiteness and Factorization, de Gruyter, Berlin, 2012.
  9. F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (2005), no. 1, 190-198. https://doi.org/10.1016/j.jalgebra.2004.08.028
  10. F. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), no. 2, 206-214. https://doi.org/10.1007/s002330010128
  11. F. DeMeyer and K. Schneider, Automorphisms and zero divisor graphs of commutative rings, Commutative rings, 25-37, Nova Sci. Publ., Hauppauge, NY, 2002.
  12. J. Han, The zero-divisor graph under group actions in a noncommutative ring, J. Korean Math. Soc. 45 (2008), no. 6, 1647-1659. https://doi.org/10.4134/JKMS.2008.45.6.1647
  13. T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), no. 1, 174-193. https://doi.org/10.1016/j.jalgebra.2006.01.019
  14. S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7, 3533-3558. https://doi.org/10.1081/AGB-120004502
  15. S. Park and J. Han, The group of graph automorphisms over a matrix ring, J. Korean Math. Soc. 48 (2011), no. 2, 301-309. https://doi.org/10.4134/JKMS.2011.48.2.301
  16. S. P. Redmond, The zero-divisor graph of a noncommutative ring, Int. J. Commut. Rings 1 (2002), no. 4, 203-211.
  17. S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338-2348. https://doi.org/10.1080/00927872.2010.488675

피인용 문헌

  1. Automorphism group of the total graph over a matrix ring vol.65, pp.3, 2017, https://doi.org/10.1080/03081087.2016.1197176
  2. Automorphisms of the zero-divisor graph of 2 × 2 matrix ring over ℤps 2016, https://doi.org/10.1142/S0219498817502279
  3. Automorphisms of the zero-divisor graph of the full matrix ring vol.65, pp.5, 2017, https://doi.org/10.1080/03081087.2016.1219302
  4. Automorphism group of rank-decreasing graph of matrices pp.1532-4125, 2019, https://doi.org/10.1080/00927872.2018.1552287