참고문헌
- D. N. Akhiezer, Lie Group Actions in Complex Analysis, Vieweg+Teubner Verlag, Wiesbaden, 1995.
- B. Fu and J.-M. Hwang, Classification of non-degenerate projective varieties with nonzero prolongation and application to target rigidity, Invent. Math. 189 (2012), no. 2, 457-513. https://doi.org/10.1007/s00222-011-0369-9
- J.-M. Hwang, Geometry of minimal rational curves on Fano manifolds, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), 335-393, ICTP Lect. Notes, 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001.
- J.-M. Hwang, Deformation of the space of lines on the 5-dimensional hyperquadric, preprint, 2010.
- J.-M. Hwang and N. Mok, Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kahler deformation, Invent. Math. 131 (1998), no. 2, 393-418. https://doi.org/10.1007/s002220050209
- J.-M. Hwang and N. Mok, Varieties of minimal rational tangents on uniruled projective manifolds, Several complex variables (Berkeley, CA, 1995-1996), 351-389, Math. Sci. Res. Inst. Publ., 37, Cambridge Univ. Press, Cambridge, 1999.
- J.-M. Hwang and N. Mok, Deformation rigidity of the rational homogeneous space associated to a long simple root, Ann. Sci. Ecole Norm. Sup. (4) 35 (2002), no. 2, 173-184. https://doi.org/10.1016/S0012-9593(02)01087-X
-
J.-M. Hwang and N. Mok, Deformation rigidity of the 20-dimensional
$F_4$ -homogeneous space associated to a short root, Algebraic transformation groups and algebraic varieties, 37-58, Encyclopaedia Math. Sci., 132, Springer, Berlin, 2004. - J.-M. Hwang and N. Mok, Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kahler deformation, Invent. Math. 160 (2005), no. 3, 591-645. https://doi.org/10.1007/s00222-004-0417-9
- S. Kebekus, Families of singular rational curves, J. Algebraic Geom. 11 (2002), no. 2, 245-256. https://doi.org/10.1090/S1056-3911-01-00308-3
- K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Grundlehren der mathematischen Wissenschaften 283, Springer, Berlin-Heidelberg-New York, 1986.
- K. Kodaira and J. Morrow, Complex Manifolds, Holt, Rinehart and Winston, Inc., New York, 1971.
- J. M. Landsberg and L. Manivel, On the projective geometry of rational homogeneous varieties, Comment. Math. Helv. 78 (2003), no. 1, 65-100. https://doi.org/10.1007/s000140300003
- I. A. Mihai, Odd symplectic flag manifolds, Transform. Groups 12 (2007), no. 3, 573-599. https://doi.org/10.1007/s00031-006-0053-0
- Y. Miyaoka and S. Mori, A numerical criterion for uniruledness, Ann. of Math. 124 (1986), no. 1, 65-69. https://doi.org/10.2307/1971387
- S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. 110 (1979), no. 3, 593-606. https://doi.org/10.2307/1971241
- S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. USA 86 (1989), no. 9, 3000-3002. https://doi.org/10.1073/pnas.86.9.3000
- K.-D. Park, Varieties of minimal rational tangents on Fano manifolds, PhD thesis, Seoul National University, 2014.
- B. Pasquier, On some smooth projective two-orbit varieties with Picard number 1, Math. Ann. 344 (2009), no. 4, 963-987. https://doi.org/10.1007/s00208-009-0341-9
- B. Pasquier and N. Perrin, Local rigidity of quasi-regular varieties, Math. Z. 265 (2010), no. 3, 589-600. https://doi.org/10.1007/s00209-009-0531-x
- F. L. Zak, Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, Vol. 127, Amer. Math. Soc., Providence, Rhode Island, 1993.