DOI QR코드

DOI QR Code

단백질 분해효소를 이용한 오계 다리육 펩타이드 생산 최적화

Optimization of enzymatic hydrolysis of legs proteins of black body fowl(Ogae) to produce peptides using a commercial protease

  • 최소영 (중부대학교 식품생명과학과) ;
  • 김아연 (중부대학교 식품생명과학과) ;
  • 유선균 (중부대학교 식품생명과학과)
  • Choi, So Young (Department of Food and Biotechnology, Joongbu University) ;
  • Kim, A-Yeon (Department of Food and Biotechnology, Joongbu University) ;
  • Yoo, Sun Kyun (Department of Food and Biotechnology, Joongbu University)
  • Received : 2016.02.19
  • Accepted : 2016.04.01
  • Published : 2016.03.30

Abstract

연산오계는 오래전부터 건강기능 증진 및 치료 효능이 높은 것으로 알려져 왔다. 최근 건강기능식품 소재로 기능성 펩타이드 효능이 알려짐에 따라, 연산오계 다리육으로부 올리고 펩타이드 최적 생산 공정 및 생성물 특성에 대하여 연구를 수행하였다. 최적 효소가수 분해 공정 표면반응 분석을 이용하여 수행하였다. 최적 공정 조건을 확립하기 위해서 온도 (40, 50, $60^{\circ}C$), pH (pH 6.0, 7.0, 8.0), 효소 (1, 2, 3%) 범위에서 수행을 하였다. 생성물에 대한 가수분해도, 유리아미노산, 분자량 분포를 분석하였다. 효소 가수분해 최적 온도는 $58^{\circ}C$, pH 7.5, 효소의 농도는 3% 이었다. 최적 조건에서 2 시간 효소 가수분해를 한 결과 75-80% 이었다. 유리 아미노산 총량은 168.131 mg/100 g 이었다. 분자량를 MALDI-TOF 으로 분석을 한 결과 90% 이상이 300-1,000 Da 분포를 보여주었다.

Yeonsan Ogae has been known as supporting health and high efficacy of treatment. In recent days, as the efficacy of functional peptides has known, the optimization of oligo peptides production and its characteristics from Ogae legs has been performed. Response surface method was used to perform the optimizaion of enzyme hydrolysis. The range of processes was temperature ( 40, 50 and $60^{\circ}C$), pH( pH 6.0, 7.0 and 8.0 ), and enzyme( 1, 2 and 3% ). The degree of hydrolysis, amino acids, molecular weight of products were analyzed. The optimum process of enzyme hydrolysis were determined as temperature $58^{\circ}C$, pH 7.5, and enzyme concentration 3%. At optimum conditions, the degree of hydrolysis after 2 h reaction was 75-80%. The amino acid and were 168.131 mg/100 g, respectively. The molecular weight of products by using MALDI-TOF was ranged from 300 to 1,000 Da.

Keywords

References

  1. Kim JJ Herb medicine of present 1. Kwang Bok Press 150-166. 1987
  2. Nam HS. Market tendency and development of physiological active peptide. Kor J Food Ind Nutr 4:17-19. 1999
  3. Lee CH. Application and development of protein sources. Kor J Food Sci Ind 25:93-100. 1992
  4. Rupnow JH. Proteins. Biochemisty and Application in Encyclopedia of Food Science and Technology, Hui, Y.H.(ed.), John Willy and Son Inc, NY 3: 2182. 1992
  5. Mahmoud MI. Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technology 48:89-95. 1994
  6. Skanderby M. 蛋白分解物の 機能\性と そ の利用. 食品と開 發 29:23-26. 1994
  7. Kitts DD, Weiler K, "Bioactive proteins and peptides from food sources. Application of bioprocesses used in isolation and recovery. Curr Pharm Des"., Vol. 9, No. 16, pp.1309-1323, 2003. https://doi.org/10.2174/1381612033454883
  8. Anne Pihlanto-Leppala, "Bioactive peptides derived from bovine whey protein: opioid and ACE-inhibitory peptides. Trends Food Sci Technol". Vol. 11, No. 9-10, pp.347-356. 2001.
  9. Arihara K, Nakashima Y, Mukai T, et. al., "Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Sci", Vol. 57, No. 3, pp.319-324, 2001. https://doi.org/10.1016/S0309-1740(00)00108-X
  10. Lee SH, Song KB. "Purification of an iron-binding nona-peptide from hydrolysates of porcine blood plasma protein. Process Biochem", Vol. 44, No. 3, pp.378-381, 2009. https://doi.org/10.1016/j.procbio.2008.12.001
  11. Huang G, Ren Z, Jiang J. "Separation of iron-binding peptides from shrimp processing by-products hydrolysates. Food Bioprocess Technol", Vol. 4, No. 8, pp.1527-1532, 2011. https://doi.org/10.1007/s11947-010-0416-3
  12. Lee SH, Song KB. "Isolation of an angiotensin converting enzyme inhibitory peptide from irradiated bovine blood plasma protein hydrolysates. J Food Sci", Vol. 68, No. 8, pp.2469-2472, 2003. https://doi.org/10.1111/j.1365-2621.2003.tb07047.x
  13. Mine Y, Ma F, Lauriau S. "Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J Agric Food Chem", Vol. 52, pp.1088-1094. 2004. https://doi.org/10.1021/jf0345752
  14. FitzGerald RJ, Meisel H. "Milk proteinderived peptide inhibitor of angiotensin-Iconverting enzyme. Br J Nutr", Vol. 84, pp.33-37. 2000.
  15. Seung Kyun Hwang, Jun Taek Hong, Kyung Hwan Jung, Byung Chul Chang, Kyung Suk Hwang, Jung Hee Shin, Sung Paal Yim, Sun Kyun Yoo, "Process Optimization of Dextran Production by Leuconostoc sp. strain YSK. Isolated from Fermented Kimchi. J. Life Sci". Vol. 18, No. 10, pp.1377-1383, 2008. https://doi.org/10.5352/JLS.2008.18.10.1377
  16. Han. B.H., J.H. Pyeun, K.T. Lee, S.I. Choi and S.Y. Cho. "A study on rapid fermentation of whole sardine for sauce production. Bull. Fish. Res. Dev. Agency". Vol. 29, pp.59-70, 1982.
  17. Shahidi F, Rubin LJ, D'Souza LA. "Meat flavor volatiles - areview of composition, techniques of analysis, and sensory evaluation. Crit Rev Food Sci Nutr." Vol. 24, pp.141-243. 1986. https://doi.org/10.1080/10408398609527435
  18. Junus Salampessy, Narsimha Reddy, Kasipathy Kailasapathy, Michael Phillips, "Functional and potential therapeutic ACE-inhibitory peptides derived from bromelain hydrolysis of trevally proteins. journal of functional foods". Vol. 14, pp.716-725, 2015. https://doi.org/10.1016/j.jff.2015.02.037
  19. Huang G, Ren Z, Jiang J. "Separation of iron-binding peptides from shrimp processing by-products hydrolysates. Food Bioprocess Technol," Vol. 4, pp.1527- 1532, 2011. https://doi.org/10.1007/s11947-010-0416-3
  20. Vattem DA, Mahoney RR. "Production of dialyzable iron by in vitro digestion of chicken muscle protein fractions: the size of the dialyzable iron. J Sci Food Agric," Vol. 85, pp.1537-1542, 2005. https://doi.org/10.1002/jsfa.2043

Cited by

  1. 꽃게(Ovalipes punctatus) 단백질 유래 항산화 기능성 펩타이드 제조 최적공정 확립 및 이화학적 특성 vol.35, pp.2, 2016, https://doi.org/10.12925/jkocs.2018.35.2.367
  2. Effect of Yeonsan Ogye bioactive peptides on anti-oxidant indexes in rats' liver vol.52, pp.4, 2016, https://doi.org/10.4163/jnh.2019.52.4.408