DOI QR코드

DOI QR Code

다중 슬릿 즉발감마선 카메라를 위한 이중모드 신호처리 모듈 개발

Development of Dual-mode Signal Processing Module for Multi-slit Prompt-gamma Camera

  • 박종훈 (한양대학교 원자력공학과) ;
  • 이한림 (한양대학교 원자력공학과) ;
  • 김성훈 (한양대학교 원자력공학과) ;
  • 김찬형 (한양대학교 원자력공학과) ;
  • 신동호 (한국전자통신연구원 바이오의료IT융합연구부) ;
  • 이세병 (국립암센터 양성자치료센터) ;
  • 정종휘 (국립암센터 양성자치료센터)
  • Park, Jong Hoon (Department of Nuclear Engineering, Hanyang University) ;
  • Lee, Han Rim (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Sung Hun (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Chan Hyeong (Department of Nuclear Engineering, Hanyang University) ;
  • Shin, Dong Ho (IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Lee, Se Byeong (Proton Therapy Center, National Cancer Center) ;
  • Jeong, Jonh Hwi (Proton Therapy Center, National Cancer Center)
  • 투고 : 2016.03.15
  • 심사 : 2016.03.28
  • 발행 : 2016.03.31

초록

양성자 치료 시 양성자 빔의 특성을 이용하여 치료 부위에 국부적인 선량을 부여하고 정상조직에 불필요한 선량을 줄이기 위해서는 인체 내 양성자 빔의 비정을 실시간으로 확인하는 것이 중요하다. 이를 위해 본 연구팀은 24개의 섬광검출기 배열 및 24채널의 신호 처리 시스템으로 구성된 즉발감마선 카메라 모듈을 개발하고 있다. 본 연구에서는 다채널의 섬광 검출기 신호를 처리하기 위하여 이중모드 다채널 신호 처리 모듈을 개발하여 그 성능을 평가해보았다. 성능을 평가한 결과 에너지 교정 모드를 통해 다채널의 섬광검출기에 대하여 동시에 에너지 교정이 가능함을 확인하였고, 이를 통하여 정확하게 3 MeV에 해당하는 측정 하한 값을 결정할 수 있었다. 고속 데이터 획득 모드를 통해 45 MeV 양성자 빔에서 발생한 즉발감마선 분포를 측정한 결과 $3{\times}10^9$개의 양성자 빔에서도 양성자 선량 분포와 유사한 결과를 얻을 수 있었고, 빔 비정을 평가한 결과 $17.13{\pm}0.76mm$로 EBT film을 통하여 측정한 비정인 16.15 mm와 굉장히 밀접한 관련이 있음을 확인하였다.

In proton therapy, in vivo proton beam range verification is very important to deliver conformal dose to the target volume and minimize unnecessary dose to normal tissue. For this purpose, a multi-slit prompt-gamma camera module made of 24 scintillation detectors and 24-channel signal processing system is under development. In the present study, we have developed and tested a dual-mode signal processing system, which can operate in the energy calibration mode and the fast data acquisition mode, to process the signals from the 24 scintillation detectors. As a result of performance test, using the energy calibration mode, we were able to perform energy calibration for the 24 scintillation detectors at the same time and determine the discrimination levels for the detector channels. Further, using the fast data acquisition mode, we were able to measure a prompt-gamma distribution induced by a 45 MeV proton beam. The measured prompt gamma distribution was found similar to the proton dose distribution at the distal fall-off region, and the estimated beam range was $17.13{\pm}0.76mm$, which is close to the proton beam range of 16.15 mm measured by an EBT film.

키워드

참고문헌

  1. Paganetti H: Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol. 57:R99-R117 (2012) https://doi.org/10.1088/0031-9155/57/11/R99
  2. Knopf AC, Lomax A: In vivo proton range verification: a review. Phys. Med. Biol. 58:R131-R160 (2012)
  3. Stichelbaut F, Jongen Y: Verification of the proton beam position in the patient by the detection of prompt gamma-rays emission. Meeting of 39th Particle Therapy Co-Operative Group. (San Francisco, 2003)
  4. Min CH, Kim CH, Youn MY, Kim JW: Prompt gamma measurements for locating the dose fall-off region in the proton therapy. Appl. Phys. Lett. 89:183517 (2006) https://doi.org/10.1063/1.2378561
  5. Smeets J, Roellinghoff F, Prieels D, Stichelbaut F, Benilov A, Busca P, Fiorini C, Peloso R, Basilavecchia M, Frizzi T, Dehaes JC Dubus A: Prompt gamma imaging with a slit camera for real-time range control in proton therapy. Phys. Med. Biol. 57:3371-3405 (2012) https://doi.org/10.1088/0031-9155/57/11/3371
  6. Bom V, Joulaeizadeh L, Beekman F: Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife-edge-shaped slit. Phys. Med. Biol. 57:297-308 (2012) https://doi.org/10.1088/0031-9155/57/2/297
  7. Perali I, Celani A, Bombelli L, Fiorini C, Camera F, Clementel E, Henrotin S, Janssens G, Prieels D, Roellinghoff F, Smeets J, Stichelbaut F, Stappen FV: Prompt gamma imaging of proton pencil beams at clinical dose rate. Phys. Med. Biol. 59:5849-5871 (2014) https://doi.org/10.1088/0031-9155/59/19/5849
  8. Priegnitz M, Helmbrecht S, Janssens G, Perali I, Smeets J, Stappen FV, Sterpin E, Fiedler F: Detection of mixed-range proton pencil beams with a prompt gamma slit camera. Phys. Med. Biol. 61:855-871 (2016) https://doi.org/10.1088/0031-9155/61/2/855
  9. Frandes M, Zoglauer A, Maxim V, Prost R: A tracking Compton-scattering imaging system for hadron therapy monitoring. IEEE Trans. Nuc. Sci. 57:144-150 (2010) https://doi.org/10.1109/TNS.2009.2031679
  10. Richard MH, Chevallier M, Dauvergne D, Freud N, Henriquet P, Foulher Le, Letang JM, Montarou G, Ray C, Roellinghoff F, Testa E, Testa M, Walenta AH: Design guidelines for a double scattering Compton camera for prompt-gamma imaging during ion beam therapy: a Monte Carlo simulation study. IEEE Trans. Nuc. Sci. 58:87-94 (2011) https://doi.org/10.1109/TNS.2010.2076303
  11. Polf JC, Avery S, Mackin DS, Beddar S: Evaluation of a stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy. Phys. Med. Biol. 57:3537-3553 (2012) https://doi.org/10.1088/0031-9155/57/11/3537
  12. Krimmer J, Ley JL, Abellan C, Cachemiche JP, Caponetto L, Chen X, Dahoumane M, Dauvergne D, Freud N, Joly B, Lambert D, Lestand L, Letang JM, Magne M, Mathez H, Maxim V, Montarou G, Morel C, Pinto M, Ray C, Reithinger V, Testa E, Zoccarato Y: Development of a Compton camera for medical applications based on silicon strip and scintillation detectors. Nucl. Instrum. Meth. A 787:98-101 (2014)
  13. Mackin D, Peterson S, Beddar S, Polf JC: Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: Feasibility studies for range verification. Phys. Med. Biol. 60:7085-7099 (2015) https://doi.org/10.1088/0031-9155/60/18/7085
  14. Kim CH, Park JH, Seo H, Lee HR: Gamma electron vertex imaing and application to beam range verification in proton therapy. Med. Phys. 39:1001-1005 (2012)
  15. Lee HR, Park JH, Kim JH, Jung WG, Kim CH: Development of signal processing modules for double-sided silicon strip detector of gamma vertex imaging for proton beam dose verification. J. Radiat. Prot. 39(2):81-88 (2014) https://doi.org/10.14407/jrp.2014.39.2.081
  16. Golnik C, Hueso-Gonzalez F, Muller A, Dendooven P, Enghardt W, Fiedler F, Kormoll T, Roemer K, Petzoldt J, Wagner A, Pausch G: Range assessment in particle therapy based on prompt ${\gamma}$-ray timing measurements. Phys. Med. Biol. 59:5399-5422 (2014) https://doi.org/10.1088/0031-9155/59/18/5399
  17. Hueso-Gonzalez F, Enghardt W, Fiedler F, Golnik C, Janssens G, Petzoldt J, Prieels D, Priegnitz M, Romer K, Smeets J: First test of the prompt gamma ray timing method with heterogeneous targets at a clinical roton therapy facility. Phys. Med. Biol. 60:6247-6272 (2015) https://doi.org/10.1088/0031-9155/60/16/6247
  18. Min CH, Lee HR, Kim CH, Lee SB: Development of array- type prompt gamma measurement system for in vivo range verification in proton therapy. Med. Phys. 39:2100-2107 (2012) https://doi.org/10.1118/1.3694098
  19. 이한림, 박종훈, 김한성, 김찬형: 다채널 방사선 측정 장치의 데이터 획득 채널수 저감을 위한 멀티플렉싱 시스템 개발. 2013 춘계학술발표회 논문요약집 대한방사선방어학회. 140-141 (2013)

피인용 문헌

  1. Correction of Prompt Gamma Distribution for Improving Accuracy of Beam Range Determination in Inhomogeneous Phantom vol.28, pp.4, 2016, https://doi.org/10.14316/pmp.2017.28.4.207